學號： \qquad姓名： \qquad

Problem 1

Use the results to find the field inside a uniformly charged sphere，of total charge Q and radius R ，which is rotating at a constant angular velocity ω ．

$$
\begin{array}{ll}
A(r, \theta, \phi)=\frac{\mu_{0} R \omega \sigma}{3} r \sin \theta \hat{\phi} & r \leq R \\
A(r, \theta, \phi)=\frac{\mu_{0} R^{4} \omega \sigma}{3} \frac{\sin \theta}{r^{2}} \hat{\phi} & r \geq R
\end{array}
$$

Problem 2

A circular loop of wire，with radius R ，lies in the $x y$ plane，centered at the origin，and carries a current \boldsymbol{I} running counterclockwise as viewed from the positive z axis．
（a）What is its magnetic dipole moment？
（b）What is the（approximate）magnetic field at points far from the origin？
（c）Show that，for points on the z axis，your answer is consistent with the exact field， when $z \gg R$ ．

