姓名： \qquad學號： \qquad系級： \qquad
請詳細寫出計算過程及切勿字跡潦草，否則不以計分。

Problem 1

Calculate the torque exerted on the square loop shown in Fig．1，due to the circular loop（assume r is much larger than a or b）．If the square loop is free to rotate，what will its equilibrium orientation be？（30\％）

Fig． 1

Problem 2

A uniform current density $\vec{J}=\mathrm{J}_{0} \hat{z}$ fills a slab straddling the yz plane，from $\mathrm{x}=-\mathrm{a}$ to $\mathrm{x}=+\mathrm{a}$ ．
A magnetic dipole $\overrightarrow{\mathrm{m}}=\mathrm{m}_{0} \hat{\mathrm{x}}$ is situated at the origin．
（a）Find the force on the dipole，using $\mathrm{Eq}: \overrightarrow{\mathrm{F}}=\vec{\nabla}(\overrightarrow{\mathrm{m}} \cdot \overrightarrow{\mathrm{B}})$ ．（10\％）
（b）Do the same for a dipole pointing in the y direction $: \overrightarrow{\mathrm{m}}=\mathrm{m}_{0} \hat{\mathrm{y}}$ ．（20\％）
（c）In the electrostatic case the expressions $\overrightarrow{\mathrm{F}}=\vec{\nabla}(\stackrel{\rightharpoonup}{\mathrm{p}} \cdot \stackrel{\rightharpoonup}{\mathrm{E}})$ and $\overrightarrow{\mathrm{F}}=(\stackrel{\rightharpoonup}{\mathrm{p}} \cdot \vec{\nabla}) \overrightarrow{\mathrm{E}}$ are equivalent（proveit）， but this is not the case for the magnetic analogs（explain why）．As an example，calculate（ $\stackrel{\rightharpoonup}{\mathrm{m}} \cdot \stackrel{\rightharpoonup}{\nabla}) \stackrel{\rightharpoonup}{\mathrm{B}}$ for the configurations in（a）and（b）．（40\％）

