
3-1

Unit 3

 The Relational Model

3-2 Wei-Pang Yang, Information Management, NDHU

Outline

 3.1 Introduction

 3.2 Relational Data Structure

 3.3 Relational Integrity Rules

 3.4 Relational Algebra

 3.5 Relational Calculus

3-3

3.1 Introduction

3-4 Wei-Pang Yang, Information Management, NDHU

 A way of looking at data S P

 A prescription for

• representing data:

by means of tables

• manipulating that representation:

by select, join, ...

Relational DBMS
<e.g.> DB2, INGRES, SYBASE, Oracle

Relational Data Model

Relational Model [Codd '70]

3-5 Wei-Pang Yang, Information Management, NDHU

Relational Model (cont.)

 Concerned with three aspects of data:

1. Data structure: tables

2. Data integrity: primary key rule, foreign key rule

3. Data manipulation: (Relational Operators):

• Relational Algebra (See Section 3.4)

• Relational Calculus (See Section 3.5)

 Basic idea: relationship expressed in data values, not in link structure.

<e.g.> Entity Relationship Entity

 Mark Works_in Math_Dept

Name

Mark

Dept

Math_Dept

WORKS_IN

3-6 Wei-Pang Yang, Information Management, NDHU

Terminologies

 Relation : so far corresponds to a table.

 Tuple : a row of such a table.

 Attribute : a column of such a table.

 Cardinality : number of tuples.

 Degree : number of attributes.

 Primary key : an attribute or attribute combination that uniquely identify a tuple.

 Domain : a pool of legal values.

London
Paris
etc.

S#

S1

S2

S3

S4

S5

SNAME

Smith

Jones

Blake

Clark

Adams

STATUS

20

10

30

20

30

CITY

London

Paris

Paris

London

Athens

< Relation

Primary key

S# NAME STATUS CITY

> Domains

Tuples

C
a
r
d
i
n
a
l
i
t
y

Attributes

Degree

3-7

3.2 Relational Data Structure

3-8 Wei-Pang Yang, Information Management, NDHU

 Scalar: the smallest semantic unit of data, atomic, nondecomposable.

 Domain: a set of scalar values with the same type.

 Domain-Constrained Comparisons: two attributes defined on the

same domain, then comparisons and hence joins, union, etc. will make

sense.

 <e.g.>

 SELECT P.*, SP.* SELECT P.*, SP.*

FROM P, SP FROM P, SP

WHERE P.P#=SP.P# WHERE P.Weight=SP.Qty

 same domain different domain

 A system that supports domain will prevent users from making silly

mistakes.

Domain

3-9 Wei-Pang Yang, Information Management, NDHU

Domain (cont.)

 Domain should be specified as part of the database definition.
 <e.g.>

CREATE DOMAIN S# CHAR(5)
CREATE DOMAIN NAME CHAR(20)
CREATE DOMAIN STATUS SMALLINT;
CREATE DOMAIN CITY CHAR(15)
CREATE DOMAIN P# CHAR(6)

CREATE TABLE S
 (S# DOMAIN (S#) Not Null
 SNAME DOMAIN (NAME),
 .
 .
CREATE TABLE P
 (P# DOMAIN (P#) Not Null,
 PNAME DOMAIN (NAME).
 .
 .
CREATE TABLE SP
 (S# DOMAIN (S#) Not Null,
 P# DOMAIN (P#) Not Null,

 Composite domains: a combination of simple domains.

 <e.g.> DATE = MONTH(1..12) + DAY(1..31) +YEAR(0..9999)

 CREATE DOMAIN MONTH CHAR(2);

CREATE DOMAIN DAY CHAR(2);

CREATE DOMAIN YEAR CHAR(4);

 CREATE DOMAIN DATE

 (MONTH DOMAIN (MONTH),

 DAY DOMAIN (DAY),

 YEAR DOMAIN (YEAR));

3-10 Wei-Pang Yang, Information Management, NDHU

Relations

 Definition : A relation on domains D1, D2, ..., Dn (not necessarily all

distinct) consists of a heading and a body.

 heading

 body

• Heading : a fixed set of attributes A1,....,An such that Aj

underlying domain Dj (j=1...n) .

• Body: a time-varying set of tuples.

• Tuple: a set of attribute-value pairs.

 {A1:Vi1, A2:Vi2,..., An:Vin}, where I = 1...m

or
 t t t t

m1 2 3
, , ,...

S# SNAME STATUS CITY

S1 Smith 20 London

S4 Clark 20 London

3-11 Wei-Pang Yang, Information Management, NDHU

Properties of Relations

 There are no duplicate tuples: since relation is a mathematical set.

• Corollary : the primary key always exists.

 (at least the combination of all attributes of the relation has the uniqueness

property.)

 Tuples are unordered.

 Attributes are unordered.

 All attribute values are atomic.

i.e. There is only one value, not a list of values at

 every row-and-column position within the table.

i.e. Relations do not contain repeating groups.

i.e. Relations are normalized.

3-12 Wei-Pang Yang, Information Management, NDHU

Properties of Relations (cont.)

 Normalization S#

S1

S2

S3

S4

 PQ

 { (P1,300),

 (P2, 200),

 (P3, 400),

 (P4, 200),

 (P5, 100),

 (P6, 100) }

 { (P1, 300),

 (P2, 400) }

 { (P2, 200) }

 { (P2, 200),

 (P4, 300),

 (P5, 400) }

S#

S1

S1

S1

S1

S1

S1

S2

S2

S3

S4

S4

S4

P#

P1

P2

P3

P4

P5

P6

P1

P2

P2

P2

P4

P5

QTY

300

200

400

200

100

100

300

400

200

200

300

400

Normalized

 1NF
“fact”

- degree : 2 - degree: 3

- domains: - domains:

 S# = {S1, S2, S3, S4} S# = {S1, S2, S3, S4}

 PQ = {<p,q> | p{P1, P2, ..., P6} P# = {P1, P2, ..., P6}

 q {x| 0 x 1000}} QTY = {x| 0x 1000}}

 - a mathematical relation - a mathematical relation

3-13 Wei-Pang Yang, Information Management, NDHU

Properties of Relations (cont.)

 Reason for normalizing a relation : Simplicity!!

 <e.g.> Consider two transactions T1, T2:

 Transaction T1 : insert ('S5', 'P6' , 500)

 Transaction T2 : insert ('S4', 'P6', 500)

 There are difference:

• Un-normalized: two operations (one insert, one append)

• Normalized: one operation (insert)

3-14 Wei-Pang Yang, Information Management, NDHU

Kinds of Relations

• Base Relations (Real Relations): a named, atomic relation; a direct part of the database.
e.g. S, P

• Views (Virtual Relations): a named, derived relation; purely represented by its

definition in terms of other named relations.

• Snapshots: a named, derived relation with its own stored data.

 <e.g.>

 CREATE SNAPSHOT SC

 AS SELECT S#, CITY

 FROM S

 REFRESH EVERY DAY;

• A read-only relation.

• Periodically refreshed

• Query Results: may or may not be named, no persistent existence within the database.

• Intermediate Results: result of subquery, typically unnamed.

• Temporary Relations: a named relation, automatically destroyed at some appropriate

time.

Relation

Relation

OP

S P

London Supplier

Base table

View

Base table

3-15 Wei-Pang Yang, Information Management, NDHU

Relational Databases

 Definition: A Relational Database is a database that is perceived by the users

as a collection of time-varying, normalized relations.

• Perceived by the users: the relational model apply at the external and

conceptual levels.

• Time-varying: the set of tuples changes with time.

• Normalized: contains no repeating group (only contains atomic value).

 The relational model represents a database system at a level of abstraction that

removed from the details of the underlying machine, like high-level language.

machine

C, PASCAL ,PL/1

assembler
Relational
Data Model

DBMS environments

Relational DBMS

3-16

3.3 Relational Integrity Rules

Purpose:

 to inform the DBMS of certain constraints

 in the real world.

3-17 Wei-Pang Yang, Information Management, NDHU

 Keys

 Candidate keys: Let R be a relation with attributes A1, A2, ..., An.

 The set of attributes K (Ai, Aj, ..., Am)

 of R is said to be a candidate key iff it satisfies:

• Uniqueness: At any time, no two tuples of R have the same value for K.

• Minimum: none of Ai, Aj, ... Ak can be discarded from K without destroying

the uniqueness property.

<e.g.> S# in S is a candidate key.

 (S#, P#) in SP is a candidate key.

 (S#, CITY) in S is not a candidate key.

 Primary key: one of the candidate keys.

 Alternate keys: candidate keys which are not the primary key.

<e.g.> S#, SNAME: both are candidate keys
 S#: primary key
 SNAME: alternate key.

 Note: Every relation has at least one candidate key.

S# SNAME STATUS CITY

S1 Smith 20 London

S4 Clark 20 London

3-18 Wei-Pang Yang, Information Management, NDHU

Foreign keys (p.261 of C. J . Date)

 Foreign keys: Attribute FK (possibly composite) of base relation R2 is a

foreign keys iff it satisfies:

• 1. There exists a base relation R1 with a candidate key CK, and

• 2. For all time, each value of FK is identical to the value of CK in

 some tuple in the current value of R1.

reference
reference

Foreign keys, FK

S#

S1

S2

S3

SNAME

.

.

.

. . .

.

.

.

 S

(R1)

S#

S1

S1

S2

S2

S2

P#

P2

P4

P1

P2

P4

QTY

.

.

.

.

.

 SP

(R2)

P#

P1

P2

P3

P4

PNAME

.

.

.

.

. . .

.

.

.

.

 P

(R1)

CK

3-19 Wei-Pang Yang, Information Management, NDHU

Two Integrity Rules of Relational

Model
 Rule 1: Entity Integrity Rule

 No component of the primary key of a base relation is

allowed to accept nulls.

 Rule 2: Referential Integrity Rule

 The database must not contain any unmatched foreign

key values.

 Note: Additional rules which is specific to the database can be given.

 <e.g.> QTY = { 0~1000}

 However, they are outside the scope of the relational model.

3-20 Wei-Pang Yang, Information Management, NDHU

Referential Integrity Rule
How to avoid against the referential Integrity Rule?

 Delete rule: what should happen on an attempt to delete/update
target of a foreign key reference

• RESTRICTED

• CASCADES

• NULLIFIES

 <e.g.> User issues:

 DELETE FROM S WHERE S#='S1'

 System performs:

 Restricted:

 Reject!

 Cascades:

 DELETE FROM SP WHERE S#='S1'

 Nullifies:

 UPDATE SP SET S#=Null WHERE S#='S1'

S1 S1

S1

S SP

Cascade!!

3-21 Wei-Pang Yang, Information Management, NDHU

Foreign Key Statement

 Descriptive statements:
 FOREIGN KEY (foreign key) REFERENCES target

 NULLS [NOT] ALLOWED

 DELETE OF target effect

 UPDATE OF target-primary-key effect;

effect: one of {RESTRICTED, CASCADES, NULLIFIES}

<e.g.1> (p.269)

 CREATE TABLE SP

 (S# S# NOT NULL, P# P# NOT NULL,

 QTY QTY NOT NULL,

 PRIMARY KEY (S#, P#),

 FOREIGN KEY (S#) REFERENCE S

 ON DELETE CASCADE

 ON UPDATE CASCADE,

 FOREIGN KEY (P#) REFERENCE P

 ON DELETE CASCADE

 ON UPDATE CASCADE,

 CHECK (QTY>0 AND QTY<5001));

3-22

3.4 Relational Algebra

3-23 Wei-Pang Yang, Information Management, NDHU

Introduction to Relational Algebra

 The relational algebra consists of a collection of eight high-level operators

that operate on relations.

 Each operator takes relations (one or two) as operands and produce a

relation as result.

• the important property of closure.

• nested relational expression is possible.

<e.g.> R3 = (R1 R2)

T1 R1 join R2

R3 T1 selection

((()))OP OP A OP B
2 1 3

 Integer

{I; +, -, *}

objects

+ 0 1 2 3

0 0 1 2 3

1 1 2 3 4

2 2 3 4 5

3 3 4 5 6

{relations; OP1, OP2, ..., OP8}

2-3 = -1  N not closure!

 N = {1,2,3,....}

NOT Closure!

{{0,1,2,3},+}

+ 0 1 2 3

0 0 1 2 3

1 1 2 3 0

2 2 3 0 1

3 3 1 0 2
Closure!

1+2 = 3  N

5+8 = 13  N closure!

3-24 Wei-Pang Yang, Information Management, NDHU

Introduction to Relational Algebra (cont.)

 Relational operators: [defined by Codd, 1970]

• Traditional set operations:

• Union (

• Intersection ()

• Difference ()

• Cartesian Product / Times (x)

• Special relational operations:

• Restrict () or Selection

• Project ()

• Join ()

• Divide ()

3-25 Wei-Pang Yang, Information Management, NDHU

Relational Operators

Union ( Intersection () Difference ()

3-26 Wei-Pang Yang, Information Management, NDHU

Relational Operators (cont.)

Restrict () Project () Product (x)

x

y

a

a

b

b

c

c

x

y

x

y

x

y

a

b

c

b1

b2

b3

Join (Natural)

a1

a2

a3

b1

b1

b2

c1

c2

c3

a1

a2

a3

b1

b1

b2

c1

c1

c2

Divide ()

a

a

a

b

c

x

y

z

x

y

x

z
a

R1 x y R2 z w

R1

 R2

y=z

R1 x R2

x y z w
a1 b1 b1 c1

a1 b1 b2 c2

a1 b1 b3 c3

a2 b1 b1 c1

3-27 Wei-Pang Yang, Information Management, NDHU

SQL vs. Relational Operators

 A SQL SELECT contains several relational operators.
<e.g.>

 SQL: SELECT S#, SNAME

 FROM S, SP

 WHERE S.S# = SP.S#

 AND CITY = 'London ‘

 AND QTY > 200

 BNF (p. 3-44)

SQL

Language

processor

algebra

(intermediate

form)

Code generator

Object code

1> S S# SP

2> CITY ='London', QTY>200

3> S#,SNAME

 S#, SNAME ( CITY='London', QTY>200 (S S# SP))

3-28 Wei-Pang Yang, Information Management, NDHU

Traditional Set Operations

 Union Compatibility: two relations are union compatible iff they have

identical headings.

i.e.:

 1. they have same set of attribute name.

 2. corresponding attributes are defined on the same domain.

• objective: ensure the result is still a relation.

 Union (), Intersection () and Difference () require Union Compatibility,

while Cartesian Product (X) don't.

3-29 Wei-Pang Yang, Information Management, NDHU

Traditional Set Operations: UNION

 A, B: two union-compatible relations.

 A : (X1,...,Xm)

 B : (X1,...,Xm)

• A UNION B:

• Heading: (X1,...,Xm)

• Body: the set of all tuples t belonging to either A or B (or both).

• Association:

 (A B)  C = A  (B  C)

• Commutative:

 A  B = B  A

S# SNAME STATUS CITY

S1 Smith 20 London

S4 Clark 20 London

A S# SNAME STATUS CITY

S1 Smith 20 London

S2 Jones 10 Paris

B

S# SNAME STATUS CITY

S1 Smith 20 London

S2 Jones 10 Paris

S4 Clark 20 London

A  B

3-30 Wei-Pang Yang, Information Management, NDHU

Traditional Set Operations: INTERSECTION

• A, B: two union-compatible relations.

 A : (X1,...,Xm)

 B : (X1,...,Xm)

• A INTERSECT B:

• Heading: (X1,...,Xm)

• Body: the set of all tuples t belonging to both A and B.

• Association:

 (A  B) C = A  (B C)

• Commutative:

 A B = B A

A B S# SNAME STATUS CITY

S1 Smith 20 London

S# SNAME STATUS CITY

S1 Smith 20 London

S4 Clark 20 London

A S# SNAME STATUS CITY

S1 Smith 20 London

S2 Jones 10 Paris

B

3-31 Wei-Pang Yang, Information Management, NDHU

Traditional Set Operations:

DIFFERENCE
• A, B: two union-compatible relations.

 A : (X1,...,Xm)

 B : (X1,...,Xm)

• A MINUS B:

• Heading: (X1,...,Xm)

• Body: the set of all tuples t belonging to A and not to B.

• Association: No!

 (A  B)  C  A  (B C)

• Commutative: No!

 A  B  B  A

A B S# SNAME STATUS CITY

S4 Clark 20 London

B  A S# SNAME STATUS CITY

S2 Jones 20 London

S# SNAME STATUS CITY

S1 Smith 20 London

S4 Clark 20 London

A S# SNAME STATUS CITY

S1 Smith 20 London

S2 Jones 10 Paris

B

3-32 Wei-Pang Yang, Information Management, NDHU

Traditional Set Operations: TIMES

 Extended Cartesian Product (x):

Given:

 A = { a | a= (a1,...,am)}

 B = { b | b= (b1,...,bn)}

• Mathematical Cartesian product:

 A x B = { t | t=((a1,...,am),(b1,...,bn))}

• Extended Cartesian Product:

 A x B = { t | t= (a1,...,am,b1,...,bn)}

 Coalescing

• Product Compatibility: two relations are product-compatible iff their headings are
disjoint.

 <e.g.1> A (S#, SNAME)

 B (P#, PNAME, COLOR)

 A and B are product compatible!

A = {x, y}

B = {y, z}

A x B = {(x,y),(x,z),(y,y),(y,z)}

math.

A x B (S#, SNAME, P#, PNAME, COLOR)

3-33 Wei-Pang Yang, Information Management, NDHU

Traditional Set Operations: TIMES (cont.)

<e.g.2> S (S#, SNAME, STATUS, CITY)

 P (P#, PNAME, COLOR, WEIGHT, CITY)

 S and P are not product compatible!

 P RENAME CITY AS PCITY;

S x P (S#, ..., CITY, ..., CITY)

S x P (S#, ..., CITY, ..., PCITY)

3-34 Wei-Pang Yang, Information Management, NDHU

Traditional Set Operations: TIMES (cont.)

 A, B: two product-compatible relations.

 A : (X1,...,Xm), A = { a | a = (a1,...,am)}

 B : (Y1,...,Yn), B = { b | b = (b1,...,bn)}

 A TIMES B: (A x B)

• Heading: (X1,...,Xm,Y1,...,Yn)

• Body: { c | c = (a1,...,am,b1,...,bn)}

 Association:

 (A x B) x C = A x (B x C)

 Commutative:

 A x B = B x A

S#

S1

S2

S3

S4

S5

A

P#

P1

P2

P3

P4

P5

P6

B

X

P#

P1

P2

P3

P4

P5

P6

P1
.
.
.

P6

P1
.
.
.

P6

P1
.
.
.

P6

P1
.
.
.

P6

S#

S1

S1

S1

S1

S1

S1

S2
.
.
.

S2

S3
.
.
.

S3

S4
.
.
.

S4

S5
.
.
.

S5

A X B

3-35 Wei-Pang Yang, Information Management, NDHU

Special Relational Operations:

Restriction
 Restriction: a unary operator or monadic

• Consider: A: a relation, X,Y: attributes or literal

• theta-restriction (or abbreviate to just 'restriction'):

 A WHERE X theta Y or X theta Y (A)
 (By Date) (By Ullman)

 theta : =, <>, >, >=, <, <=, etc.

• The restriction condition (X theta Y) can be extended to be any Boolean combination by

including the following equivalences:

 C1 and C2 (A) = C1 (A) C2 (A); C1 or C2 (A) = C1 (A)C2 (A); not C (A) = A C (A)

• <e.g.> S WHERE CITY='London'? or CITY='London'(S)

()

X Y A

S# SNAME STATUS CITY

S1 Smith 20 London

S4 Clark 20 London

S’

S

3-36 Wei-Pang Yang, Information Management, NDHU

Special Relational Operations:

Projection
 Projection: a unary operator.

• Consider:

 A : a relation

 X,Y,Z : attributes

• A[X,Y,Z] or X,Y,Z(A)

• Identity projection:

 A =A or (A) = A

• Nullity projection:

 A[] =  or (A) = 

COLOR

Red

Green

Blue

Blue

CITY

London

Paris

Rome

Paris

P <e.g.> P[COLOR,CITY]

3-37 Wei-Pang Yang, Information Management, NDHU

Special Relational Operations: Natural

Join
 Natural Join: a binary operator.

• Consider:

 A : (X1,...,Xm, Y1,...,Yn)

 B : (Y1,...,Yn, Z1,...,Zp)

• A JOIN B (or A B): common attributes appear only once. e.g. CITY

 (X1,...,Xm, Y1,...,Yn, Z1,...,Zp);

• Association:

 (A B) C = A (B C)

• Commutative:

 A B = B A

• if A and B have no attribute in common, then

 A B = A x B

3-38 Wei-Pang Yang, Information Management, NDHU

Special Relational Operations: Natural Join
(cont.)

S#

S1

S1

S1

S2

S2

S3

S3

S4

S4

S4

SNAME

Smith

Smith

Smith

Jones

Jones

Blake

Blake

Clark

Clark

Clark

STATUS

20

20

20

10

10

30

30

20

20

20

CITY

London

London

London

Paris

Paris

Paris

Paris

London

London

London

P#

P1

P4

P6

P2

P5

P2

P5

P1

P4

P6

PNAME

Nut

Screw

Cog

Bolt

Cam

Bolt

Cam

Nut

Screw

Cog

COLOR

Red

Red

Red

Green

Blue

Green

Blue

Red

Red

Red

WEIGHT

12

14

19

17

12

17

12

12

14

19

CITY

 London

S P

S.city = P.city S.city = P.city
<e.g.> S JOIN P or S P

3-39 Wei-Pang Yang, Information Management, NDHU

Special Relational Operations: Theta Join
• A, B: product-compatible relations, A: (X1,...,Xm), B: (Y1,...,Yn)

• theta : =, <>, <, >,.....

• A B = X theta Y(A x B)
 X theta Y

• If theta is '=', the join is called equijoin.

 <e.g.> a greater-than join

 SELECT S.*, P.*
 FROM S, P
 WHERE S.CITY > P.CITY

CITY>PCITY(S x (P RENAME CITY AS PCITY))

 S#

S2

S2

S2

S3

S3

S3

SNAME

Jones

Jones

Jones

Blake

Blake

Blake

STATUS

10

10

10

30

30

30

CITY

Paris

Paris

Paris

Paris

Paris

Paris

P#

P1

P4

P6

P1

P4

P6

PNAME

Nut

Screw

Cog

Nut

Screw

Cog

COLOR

Red

Red

Red

Red

Red

Red

WEIGHT

12

14

19

12

14

19

PCITY

London

London

London

London

London

London

3-40 Wei-Pang Yang, Information Management, NDHU

Special Relational Operations: Division

 Division:

• A, B: two relations.

 A : (X1,...,Xm, Y1,...,Yn)

 B : (Y1,...,Yn)

• A DIVIDEBY B (or A  B):

• Heading: (X1,...,Xm)

• Body: all (X:x) s.t. (X:x,Y:y)

 in A for all (Y:y) in B

<e.g.> "Get supplier numbers for

 suppliers who supply all parts."

P#

P1

P2

P3

P4

P5

P6

B

A

S#

S1

S1

S1

S1

S1

S1

S2

S2

S3

S4

S4

S4

P#

P1

P2

P3

P4

P5

P6

P1

P2

P2

P2

P4

P5



x y

y

S#

S1

AB
x

3-41 Wei-Pang Yang, Information Management, NDHU

Special Relational Operations:

primitive
 Which of the eight relational operators are primitive?

1. UNION

2. DIFFERENCE

3. CARTESIAN PRODUCT

4. RESTRICT

5. PROJECT

 How to define the non-primitive operators by those primitive operators?

1 Natural Join: S P

S#,SNAME,STATUS,CITY,P#,PNAME,COLOR,WEIGHT (CITY=PCITY(S X (P RENAME

CITY AS PCITY)))

s.city = p.city

3-42 Wei-Pang Yang, Information Management, NDHU

Special Relational Operations:

primitive (cont.)

A B A-(A-B) A-B

2 INTERSECT: A B = A  (A  B)

3-43 Wei-Pang Yang, Information Management, NDHU

Special Relational Operations:

primitive (cont.))

3 DIVIDE: A  B = A[X] - (A[X]  B - A)[X]

P#

P1

P2

P3

P4

P5

P6

B

A

S#

S1

S1

S1

S1

S1

S1

S2

S2

S3

S4

S4

S4

P#

P1

P2

P3

P4

P5

P6

P1

P2

P2

P2

P4

P5

S#

S1

S2

S3

S4

A[X]

S#

S1
.
.
.

S1

S2
.
.
.

S2

S3
.
.
.

S3

S4
.
.
.

S4

P#

P1
.
.
.

P6

P1
.
.
.

P6

P1
.
.
.

P6

P1
.
.
.

P6

A [X]  B

. .

A [X]  B - A

S#

S2

S2

S2

S2

S3

S3

S3

S3

S3

S4

S4

S4

P#

P3

P4

P5

P6

P1

P3

P4

P5

P6

P1

P3

P6

S#

S2

S3

S4

(A [X]  B - A) [X]

S#

S1

A[X] - (A [X]  B - A) [X]

3-44 Wei-Pang Yang, Information Management, NDHU

BNF Grammars for Relational Operator

1. expression ::= monadic-expression | dyadic-expression

2. monadic-expression ::= renaming | restriction | projection

3. renaming ::= term RENAME attribute AS attribute

4. term ::= relation | (expression)

5. restriction ::= term WHERE condition

6. Projection ::= attribute | term [attribute-commalist]

7. dyadic-expression ::= projection dyadic-operation expression

8. dyadic-operation ::= UNION | INTERSECT | MINUS | TIMES | JOIN | DIVIDEBY

 e.g. 1. S [S#, SNAME]

term attri-commalist

e.g.2 S Join P

term term

dyadic

exp (Back to p. 3-27)

3-45 Wei-Pang Yang, Information Management, NDHU

BNF Grammars for Relational Operator
(cont.)

exp

 dyadic-expression

projection dyadic-operation expression

term

relation

monadic-expression

projection

term

relation

S

JOIN

P

1

2

1

7 7 7

6

4

8

6

4

 e.g. S JOIN P

3-46 Wei-Pang Yang, Information Management, NDHU

Relational Algebra V.S. Database

Language:
 Example : Get supplier name for suppliers who supply part P2.

• SQL:

 SELECT S.SNAME

 FROM S, SP

 WHERE S.S# = SP.S#

 AND SP.P# = 'P2'

• Relational algebra:

 ((S JOIN SP) WHERE P# = 'P2') [SNAME]



SNAME (P#='P2' (S SP))

or

S# SNAME STATUS CITY S# P# QTY

S1 Smith 20 London S1 P1 300

S1 Smith 20 London S1 P2 200

S1 Smith 20 London S1 P3 400

S1 Smith 20 London S1 P4 200

S1 Smith 20 London S1 P5 100

S1 Smith 20 London S1 P6 100

S2 Jones 10 Paris S2 P1 300

S2 Jones 10 Paris S2 P2 400

S3 Blake 30 Paris S3 P2 200

S4 Clark 20 London S4 P2 200

S4 Clark 20 London S4 P4 300

S4 Clark 20 London S4 P5 400

3-47 Wei-Pang Yang, Information Management, NDHU

What is the Algebra for?

(1) Allow writing of expressions which serve as a high-level (SQL)

 and symbolic representation of the users intend.

(2) Symbolic transformation rules are possible.

 A convenient basis for optimization!

 e.g. ((S JOIN SP) WHERE P#='P2')[SNAME]

 = (S JOIN (SP WHERE P#='P2')) [SNAME]

 (p.544; p.11-12)

 Back to p.3-66

3-48

3.5 Relational Calculus

3-49 Wei-Pang Yang, Information Management, NDHU

Introduction to Relational Calculus

 A notation for expressing the definition of some new relations in

terms of some given relations.

<e.g.> SP.P#, S.CITY WHERE SP.S# = S.S#

 definition predicate

 Based on first order predicate calculus (a branch of mathematical
logic).

• Originated by Kuhn for database language (1967).

• Proposed by Codd for relational database (1972)

• ALPHA: a language based on calculus, never be implemented.

• QUEL: query language of INGRES, influenced by ALPHA.

 Two forms :

• Tuple calculus: by Codd..

• Domain calculus: by Lacroix and Pirotte.

New

P# CITY

SP S

3-50 Wei-Pang Yang, Information Management, NDHU

Tuple Calculus

 BNF Grammar:

<e.g.> "Get supplier number for suppliers in Paris
 with status > 20"

Tuple calculus expression:

SX.S# WHERE SX.CITY='Paris' and SX.STATUS>20

 tuple attribute WFF (Well-Formed Formula)

 variable

3-51 Wei-Pang Yang, Information Management, NDHU

Tuple Calculus (cont.)

 Tuple variable (or Range variable):

• A variable that "range over" some named relation.

 <e.g.>:

 In QUEL: (Ingres)

• RANGE OF SX IS S;

• RETRIEVE (SX.S#) WHERE SX.CITY = "London"

S# SNAME STATUS CITY

S1 Smith 20 London

S2 Jones 30 Paris

S3 Clerk 10 Athens

S1 Smith 20 London

sx

s

Var Y: array[1..10] Var I: Integer

Y . . .
Y[1], Y[2] I

integer

3-52 Wei-Pang Yang, Information Management, NDHU

Tuple Calculus (cont.)

• Implicit tuple variable:

 <e.g.>

 In SQL:

 SELECT S.S# FROM S WHERE S.CITY = 'London‘

In QUEL:

 RETRIEVE (SX.S#) WHERE SX.CITY='London'

3-53 Wei-Pang Yang, Information Management, NDHU

Tuple Calculus: BNF

 1. range-definition
 ::= RANGE OF variable IS range-item-commalist

 2. range-item

 ::= relation | expression

 3. expression

 ::= (target-item-commalist) [WHERE wff]

 4. target-item

 ::= variable | variable . attribute [AS attribute]

 5. wff
 ::= condition
 | NOT wff
 | condition AND wff
 | condition OR wff
 | IF condition THEN wff
 | EXISTS variable (wff)
 | FORALL variable (wff)
 | (wff)

3-54 Wei-Pang Yang, Information Management, NDHU

Tuple Calculus: BNF - Well-Formed Formula

(WFF)

(a) Simple comparisons:

• SX.S# = 'S1'

• SX.S# = SPX.S#

• SPX.P# <> PX.P#

(b) Boolean WFFs:

• NOT SX.CITY='London'

• SX.S#=SPX.S# AND SPX.P#<>PX.P#

(c) Quantified WFFs:

• EXISTS: existential quantifier
 <e.g.>

 EXISTS SPX (SPX.S#=SX.S# and SPX.P#= 'P2')

i.e. There exists an SP tuple with S# value equals to the value of SX.S# and P# value equals to 'P2'

• FORALL: universal quantifier
 <e.g.>

 FORALL PX(PX.COLOR = 'Red')

i.e. For all P tuples, the color is red.

<Note>: FORALL x(f) = NOT EXISTS X (NOT f)

S# P# QTY

S1 P2 300

S2 P3

S2 P1

S#

S1

S2

S SP

3-55 Wei-Pang Yang, Information Management, NDHU

Tuple Calculus: EXAMPLE 1

 [Example 1]: Get Supplier numbers for suppliers in Paris with status > 20

• SQL:

 SELECT S#

 FROM S

 WHERE CITY = 'Paris' AND STATUS >20

• Tuple calculus:

 SX.S# WHERE SX.CITY= 'Paris‘ AND SX.STATUS > 20

• Algebra:

 S# (CITY='Paris', and STATUS>20(S))

3-56 Wei-Pang Yang, Information Management, NDHU

Tuple Calculus: EXAMPLE 2

[Example 2]: Get all pairs of supplier numbers such that the two suppliers are
located in the same city.

• SQL:

 SELECT FIRST.S#, SECOND.S#

 FROM S FIRST, S SECOND

 WHERE FIRST.CITY = SECOND.CITY AND FIRST.S# < SECOND.S#;

• Tuple calculus:

 FIRSTS#=SX.S#, SECONDS# =SY.S#

 WHERE SX.CITY=SY.CITY AND SX.S# < SY.S#

• Algebra:

FIRSTS#,SECONDS# (FIRSTS#<SECONDS#

((FIRSTS#,CITY (S RENAME S# AS FIRSTS#))

(SECONDS#,CITY (S RENAME S# AS SECONDS#))))

(S.S#) (S.S#)

Rename S FIRST, SECOND

Output:

{S1,S4}{S2,S3}

{S1, S1}

{S1, S4}

{S4, S1}

{S4, S4}

city=city

3-57 Wei-Pang Yang, Information Management, NDHU

Tuple Calculus: EXAMPLE 3

[Example 3]: Get supplier names for suppliers who supply all parts.

• SQL:

 SELECT SNAME

 FROM S

 WHERE NOT EXISTS

 (SELECT * FROM P

 WHERE NOT EXISTS

 (SELECT * FROM SP

 WHERE S# = S.S# AND P# = P.P#));

• Tuple calculus:

 SX.SNAME

 WHERE FORALL PX

 (EXISTS SPX

 (SPX.S# = SX.S# AND SPX.P# = PX.P#))

• Algebra:

SNAME (((S#,P# SP)  (P# P)) S)
A B

S1 (P3-43)

P1, P2, ..., P6  PX

S1

S#

S1

S

S1 Smith

SX

P#

P1

P

S# P# QTY

S1 P1

SP

3-58 Wei-Pang Yang, Information Management, NDHU

Tuple Calculus: EXAMPLE 4

[Example 4]: Get part numbers for parts that either weigh more than 16
pounds or are supplied by supplier S2, or both.

• SQL:

 SELECT P# FROM P
 WHERE WEIGHT > 16

 UNION

 SELECT P# FROM SP

 WHERE S# = 'S2'

• Tuple calculus:

 RANGE OF PU IS

 (PX.P# WHERE PX.WEIGHT>16),

 (SPX.P# WHERE SPX.S#='S2');

 PU.P#;

• Algebra:

(P# (WEIGHT>16P))  (P# (S#='S2' SP))

[參考用]

3-59 Wei-Pang Yang, Information Management, NDHU

Relational Calculus v.s. Relational Algebra.

 Algebra

 Provides explicit operations

[e.g.JOIN, UNION, PROJECT,...]

to build desired relation from the given relations.

 1> JOIN S with SP on S#

 2> RESTRICT the result

 with P# = 'P2'

 3> PROJECT the result

 on S# and CITY

 Prescriptive (how?)

 Procedural

 Calculus

 Only provide a notation for formulate

 the definition of that desired relation in

 terms of those given relation.

 SX.S#, SX.CITY

 WHERE EXISTS SPX

 (SPX.S#=SX.S#

 AND SPX.P#= 'P2')

 descriptive (what ?)

 non-procedural

<e.g.> Get supplier numbers and cities for suppliers who supply part P2.

3-60 Wei-Pang Yang, Information Management, NDHU

Relational Calculus  Relational Algebra

 Codd's reduction algorithm:

1. Show that any calculus expression can be reduced to an algebraic
equivalent.

 Algebra  Calculus

 2. show that any algebraic expression can be reduced to a calculus
equivalent

 Calculus  Algebra

 Algebra  Calculus

("expressive power")

3-61 Wei-Pang Yang, Information Management, NDHU

Relationally Complete

 Def : A language is said to be relationally complete if it is at least as
powerful as the relational calculus.

 i.e. if any relation definable via a single expression of the calculus is
definable via a single expression of the language.

 <e.g.> SQL,QUEL

 Show a language L is relationally complete

 Show that L includes analogs of the five primitive algebraic operation.

 Easier than show L is at least as powerful as relational calculus.

Relationally complete

languages

relational

calculus

3-62 Wei-Pang Yang, Information Management, NDHU

Domain Calculus
 (Domain-Oriented Relational Calculus)

 Distinctions between domain calculus and tuple calculus:

• Variables range over domain instead of relation.

• Support an additional form of comparison:

 the membership condition

 <e.g.1> SP(S#:'S1', P#:'P1')

 True iff exists a tuple in SP with S#='S1‘ and P# = 'P1'

 <e.g.2> SP(S#: SX, P#:PX)

 True iff exists a tuple in SP with

 S#=current value of domain var. SX.

 P#=current value of domain var. PX.

 Var. SX PX

 S5 P9

S

S#

S1

S2

S3

S4

e.g.: S# Domain

 ={S1, S2, ..., S100}

 S# Range

 ={S1, S2, S3, S4}

SP

S# P# QTY

3-63 Wei-Pang Yang, Information Management, NDHU

Domain Calculus:
attributes WHERE membership_condition

 Domain Calculus expressions:
e.g.1 SX

 (i.e. all possible values of supplier number)

e.g.2 SX WHERE S(S#:SX)

 (i.e. all S# in relation S)

e.g.3 SX WHERE S(S#:SX, CITY:'London')

 (i.e. subset of S# in S for which city is 'London')

 SQL:
 Select S#
 From S
 Where City = 'London'

e.g.4

 SX, CITYX

 WHERE S(S#:SX, CITY:CITYX) AND SP(S#: SX,P#: 'P2')
(i.e. subset of S# and CITY in S for the suppliers who supply P2)

 Tuple Calculus:

 term WHERE wff
e.g. {S1, ...,

S100}

conditio

n

e.g. {S1, ...,

S4}

QBE

S S# SNAME STATUS CITY

 P. 'London'
print

 Domain Calculus:

 term WHERE m-c

3-64 Wei-Pang Yang, Information Management, NDHU

Query-by-Example (QBE)

 An attractive realization of the domain calculus

 Simple in syntax

 e.g. Get supplier numbers for suppliers in Paris with status > 20

• Tuple calculus:

 SX.S#

 WHERE SX.CITY= 'Paris'

 AND SX.STATUS > 20

• Domain calculus:

 SX

 WHERE EXISTS STATUSX

 (STATUSX >20) AND

 S(S#:SX, STATUS:STATUSX, CITY:'Paris')

• QBE:

 P. : print or present
S S# SNAME STATUS CITY

P. >20 “Paris”

3-65 Wei-Pang Yang, Information Management, NDHU

Query-by-Example (cont.)

[Example]: Get all pairs of supplier numbers such that the two suppliers are located in the
same city.

• SQL: SELECT FIRST.S#, SECOND.S#

 FROM S FIRST, S SECOND

 WHERE FIRST.CITY = SECOND.CITY AND FIRST.S# < SECOND.S#;

• Tuple calculus:

 FIRSTS# = SX.S#, SECONDS# = SY.S#

 WHERE SX.CITY = SY.CITY AND SX.S# < SY.S#

• Domain calculus:

 FIRSTS# = SX, SECONDS# = SY

 WHERE EXISTS CITYZ

 (S(S#:SX,CITY:CITYZ) AND S(S#.SY,CITY:CITYZ) AND SX<SY)

• QBE:

 _SX, _SY, _CZ are examples.

S S# CITY

-SX -CZ

-SY -CZ
P. -SX -SY

{S1, S4}

{S2, S3}

3-66 Wei-Pang Yang, Information Management, NDHU

Concluding Remarks

 Relational algebra provide a convenient target language as a
vehicle for a possible implementation of the calculus.

 Query in a calculus-based language.
 e.g. SQL, QUEL, QBE, ...

 Codd reduction algorithm

 Equivalent algebraic expression
 Optimization

 More efficient algebraic expression
 Evaluated by the already

 implemented algebraic
 operations

 Result

(p. 3-47)

more in Unit 11

Unit 11

 e.g. Join

3-67 Wei-Pang Yang, Information Management, NDHU

Concluding Remarks (cont.)

 A spectrum of data management system:

Relational Systems

S M

I

S M

I

S M

I

S M

I

Tabular
(Minimally)
Relational

 Relationally
complete

Fully
Relational

 S: Structure (Table)

 M: Manipulative

 I: Integrity

3-68 Wei-Pang Yang, Information Management, NDHU

Foreign Key Statement

 Descriptive statements:
 FOREIGN KEY (foreign key) REFERENCES target

 NULLS [NOT] ALLOWED

 DELETE OF target effect

 UPDATE OF target-primary-key effect;

effect: one of {RESTRICTED, CASCADES, NULLIFIES}

<e.g.1> (p.269)

 CREATE TABLE SP

 (S# S# NOT NULL, P# P# NOT NULL,

 QTY QTY NOT NULL,

 PRIMARY KEY (S#, P#),

 FOREIGN KEY (S#) REFERENCE S

 ON DELETE CASCADE

 ON UPDATE CASCADE,

 FOREIGN KEY (P#) REFERENCE P

 ON DELETE CASCADE

 ON UPDATE CASCADE,

 CHECK (QTY>0 AND QTY<5001));

reference
reference

S#

S1

S1

S2

S2

S2

P#

P2

P4

P1

P2

P4

QTY

.

.

.

.

.

 SP

(R2)

Foreign keys, FK

S#

S1

S2

S3

SNAME

.

.

.

. . .

.

.

.

 S

(R1)

CK

S#

S1

S2

S3

PNAME

.

.

.

 P

(R1)

. . .

.

.

.

3-69 Wei-Pang Yang, Information Management, NDHU

SQL vs. Relational Operators

 A SQL SELECT contains several relational operators.

 <e.g.>

 SQL: SELECT S#, SNAME

 FROM S, SP

 WHERE S.S# = SP.S#

 AND CITY = 'London ‘

 AND QTY > 200

 BNF (p. 3-44)

SQL

Language

processor

algebra

(intermediate

form)

Code generator

Object code

1> S S# SP

2> CITY ='London', QTY>200

3> S#,SNAME  S#, SNAME ( CITY='London', QTY>200 (S S# SP)) =

