Unit 3

The Relational Model

Outline

- 3.1 Introduction
- 3.2 Relational Data Structure
- 3.3 Relational Integrity Rules
- 3.4 Relational Algebra
- 3.5 Relational Calculus

3.1 Introduction

Relational Model [Codd '70]

- A way of looking at data

S P

- A prescription for
- representing data:

by means of tables
- manipulating that representation:
by select, join, ...

Relational Model (cont.)

- Concerned with three aspects of data:

1. Data structure: tables
2. Data integrity: primary key rule, foreign key rule
3. Data manipulation: (Relational Operators):

- Relational Algebra (See Section 3.4)
- Relational Calculus (See Section 3.5)
- Basic idea: relationship expressed in data values, not in link structure.

<e.g.> $\quad \frac{\text { Entity }}{\text { Mark }} \frac{\text { Relationship }}{\text { Works_in }} \quad$| Entity |
| :--- |
| Math_Dept |

Terminologies

- Relation : so far corresponds to a table.
- Tuple : a row of such a table.
- Attribute : a column of such a table.
- Cardinality : number of tuples.
- Degree : number of attributes.
- Primary key : an attribute or attribute combination that uniquely identify a tuple.
- Domain : a pool of legal values.

3.2 Relational Data Structure

Domain

- Scalar: the smallest semantic unit of data, atomic, nondecomposable.
- Domain: a set of scalar values with the same type.
- Domain-Constrained Comparisons: two attributes defined on the same domain, then comparisons and hence joins, union, etc. will make sense.

<e.g.>	
SELECT P.*, SP.*	SELECT P.*, SP.*
FROM P, SP	FROM
WHERE SP P.P\#=SP.P\#	WHERE
P.Weight=SP.Qty	

- A system that supports domain will prevent users from making silly mistakes.

Domain (cont.)

- Domain should be specified as part of the database definition.

<e.g.>			
CREATE	DOMAIN	S\#	CHAR(5)
CREATE	DOMAIN	NAME	CHAR (20)
CREATE	DOMAIN	STATUS	SMALLINT;
CREATE	DOMAIN	CITY	CHAR(15)
CREATE	DOMAIN	P\#	CHAR(6)
CREATE	$\begin{aligned} & \text { TABLE S } \\ & \text { (S\# } \\ & \text { SNAME DOMAIN (S\#) Not Null } \\ & \text { DOMAIN (NAME). } \end{aligned}$		
CREATE	$\begin{aligned} & \text { TABLE P } \\ & \text { (P\# } \\ & \text { PNAME } \end{aligned}$	DOMAIN	Not Null, E).
CREATE	TABLE SP $\underset{\text { P\# }}{\substack{\text { P\# }}} \begin{aligned} & \text { DON } \\ & \hline \end{aligned}$	(S\#) Not (P\#) Not	

- Composite domains: a combination of simple domains.

| <e.g.> | DATE $=$ MONTH $(1 . .12)+$ DAY $(1 . .31)+$ YEAR $(0 . .9999) ~$ | | |
| :---: | :---: | :---: | :---: | :---: |
| CREATE | DOMAIN | MONTH | CHAR(2); |
| CREATE | DOMAIN | DAY | CHAR(2); |
| CREATE | DOMAIN | YEAR | CHAR(4); |
| CREATE | DOMAIN | DATE | |
| | (MONTH | DOMAIN | (MONTH), |
| | DAY | DOMAIN | (DAY), |
| | YEAR | DOMAIN | (YEAR)); |

Relations

- Definition : A relation on domains $D_{1}, D_{2}, \ldots, D_{n}$ (not necessarily all distinct) consists of a heading and a body.
heading body

S\#	SNAME	STATUS	CITY
S1	Smith	20	London
S4	Clark	20	London

- Heading : a fixed set of attributes $\mathrm{A}_{1}, \ldots, \mathrm{~A}_{\mathrm{n}}$ such that A_{j} underlying domain $D_{j}(j=1 \ldots n)$.
- Body: a time-varying set of tuples.
- Tuple: a set of attribute-value pairs.

$$
\left\{\mathrm{A}_{1}: \mathrm{Vi}_{1}, \mathrm{~A}_{2}: \mathrm{Vi}_{2}, \ldots, \mathrm{~A}_{\mathrm{n}}: \mathrm{Vi}_{\mathrm{n}}\right\}, \text { where } \mathrm{I}=1 \ldots \mathrm{~m}
$$

or

$$
\left\{t_{1}, t_{2}, t_{3}, \ldots t_{m}\right\}
$$

Properties of Relations

- There are no duplicate tuples: since relation is a mathematical set.
- Corollary : the primary key always exists.
(at least the combination of all attributes of the relation has the uniqueness property.)
- Tuples are unordered.
- Attributes are unordered.
- All attribute values are atomic.
i.e. There is only one value, not a list of values at every row-and-column position within the table.
i.e. Relations do not contain repeating groups.
i.e. Relations are normalized.

Properties of Relations (cont.)

- Normalization

S\#	PQ
S1	\{(P1,300), (P2, 200), (P3, 400), (P4, 200), (P5, 100), (P6, 100) \}
S2	$\begin{gathered} \{(\mathrm{P} 1,300), \\ (\mathrm{P} 2,400)\} \end{gathered}$
S3	\{(P2, 200) \}
S4	$\begin{aligned} & \{(\mathrm{P} 2,200), \\ & (\mathrm{P} 4,300), \\ & (\mathrm{P} 5,400)\} \end{aligned}$

- degree : 2
- domains:

$$
\begin{aligned}
\mathrm{S} \#= & \{\mathrm{S} 1, \mathrm{~S} 2, \mathrm{~S} 3, \mathrm{~S} 4\} \\
\mathrm{PQ}= & \{\langle\mathrm{p}, \mathrm{q}>| \mathrm{p} \in\{\mathrm{P} 1, \mathrm{P} 2, \ldots, \mathrm{P} 6\} \\
& \mathrm{q} \in\{\mathrm{x} \mid 0 \leq \mathrm{x} \leq 1000\}\}
\end{aligned}
$$

- a mathematical relation

S\#	P\#	QTY
S1	P1	300
S1	P2	200
S1	P3	400
S1	P4	200
S1	P5	100
S1	P6	100
S2	P1	300
S2	P2	400
S3	P2	200
S4	P2	200
S4	P4	300
S4	P5	400

- degree: 3
- domains:

$$
\begin{aligned}
& \mathrm{S} \#=\{\mathrm{S} 1, \mathrm{~S} 2, \mathrm{~S} 3, \mathrm{~S} 4\} \\
& \mathrm{P} \#=\{\mathrm{P} 1, \mathrm{P} 2, \ldots, \mathrm{P} 6\} \\
& \mathrm{QTY}=\{\mathrm{x} \mid 0 \leq \mathrm{x} \leq 1000\}\}
\end{aligned}
$$

- a mathematical relation

Properties of Relations (cont.)

- Reason for normalizing a relation : Simplicity!!
<e.g.> Consider two transactions T1, T2:
Transaction T1 : insert ('S5', 'P6', 500)
Transaction T2 : insert ('S4', 'P6', 500)
There are difference:
- Un-normalized: two operations (one insert, one append)
- Normalized: one operation (insert)

Kinds of Relations

- Base Relations (Real Relations): a named, atomic relation; a direct part of the database. e.g. S, P
- Views (Virtual Relations): a named, derived relation; purely represented by its definition in terms of other named relations.
- Snapshots: a named, derived relation with its own stored data.

```
<e.g.>
```

 CREATE SNAPSHOT SC
 AS SELECT S\#, CITY
FROM S
REFRESH EVERY DAY;

- A read-only relation.
- Periodically refreshed

- Query Results: may or may not be named, no persistent existence within the database.
- Intermediate Results: result of subquery, typically unnamed.
- Temporary Relations: a named relation, automatically destroyed at some appropriate time.

Relational Databases

- Definition: A Relational Database is a database that is perceived by the users as a collection of time-varying, normalized relations.
- Perceived by the users: the relational model apply at the external and conceptual levels.
- Time-varying: the set of tuples changes with time.
- Normalized: contains no repeating group (only contains atomic value).
- The relational model represents a database system at a level of abstraction that removed from the details of the underlying machine, like high-level language.

3.3 Relational Integrity Rules

Purpose:

to inform the DBMS of certain constraints
in the real world.

Keys

- Candidate keys: Let R be a relation with attributes $\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{\mathrm{n}}$.

The set of attributes $K\left(A_{i}, A_{j}, \ldots, A_{m}\right)$ of R is said to be a candidate key iff it satisfies:

- Uniqueness: At any time, no two tuples of R have the same value for K .
- Minimum: none of $\mathrm{A}_{\mathrm{i}}, \mathrm{A}_{\mathrm{j}}, \ldots \mathrm{A}_{\mathrm{k}}$ can be discarded from K without destroying the uniqueness property.
<e.g.> S\# in S is a candidate key.
(S\#, P\#) in SP is a candidate key. (S\#, CITY) in S is not a candidate key.

S\#	SNAME	STATUS	CITY
S1	Smith	20	London
S4	Clark	20	London

- Primary key: one of the candidate keys.
- Alternate keys: candidate keys which are not the primary key.
<e.g.> S\#, SNAME: both are candidate keys
S\#: primary key
SNAME: alternate key.
- Note: Every relation has at least one candidate key.

Foreign keys ${ }_{\text {pr26 ofc. } . \text { Daet }}$

- Foreign keys: Attribute FK (possibly composite) of base relation R2 is a foreign keys iff it satisfies:
- 1. There exists a base relation R1 with a candidate key CK, and
- 2. For all time, each value of FK is identical to the value of CK in some tuple in the current value of R1.

Two Integrity Rules of Relational Model

- Rule 1: Entity Integrity Rule

No component of the primary key of a base relation is allowed to accept nulls.

- Rule 2: Referential Integrity Rule

The database must not contain any unmatched foreign key values.

Note: Additional rules which is specific to the database can be given.

$$
\text { <e.g.> QTY }=\{0 \sim 1000\}
$$

However, they are outside the scope of the relational model.

Referential Integrity Rule

How to avoid against the referential Integrity Rule?

- Delete rule: what should happen on an attempt to delete/update target of a foreign key reference
- RESTRICTED
- CASCADES
- NULLIFIES <e.g.> User issues:

DELETE FROM S WHERE S\#='S1'
System performs:
Restricted:

Reject!
Cascades:
DELETE FROM SP WHERE S\#='S1'
Nullifies:
UPDATE SP SET S\#=Null WHERE S\#='S1'

Foreign Key Statement

- Descriptive statements:

> FOREIGN KEY (foreign key) REFERENCES target
> NULLS [NOT] ALLOWED
> DELETE OF target effect
> UPDATE OF target-primary-key effect;
effect: one of \{RESTRICTED, CASCADES, NULLIFIES\}
<e.g.1> (p.269)

CREATE TABLE SP
(S\# S\# NOT NULL, P\# P\# NOT NULL, QTY QTY NOT NULL, PRIMARY KEY (S\#, P\#), FOREIGN KEY (S\#) REFERENCE S

ON DELETE CASCADE
ON UPDATE CASCADE,
FOREIGN KEY (P\#) REFERENCE P
ON DELETE CASCADE
ON UPDATE CASCADE, CHECK (QTY>0 AND QTY<5001));

3.4 Relational Algebra

Introduction to Relational Algebra

- The relational algebra consists of a collection of eight high-level operators that operate on relations.
- Each operator takes relations (one or two) as operands and produce a relation as result.
- the important property of closure.
- nested relational expression is possible.

Introduction to Relational Algebra (cont.)

- Relational operators: [defined by Codd, 1970]
- Traditional set operations:
- Union (\cup)
- Intersection (\cap)
- Difference (-)
- Cartesian Product / Times (x)
- Special relational operations:
- Restrict (σ) or Selection
- Project (П)
- Join (\bowtie)
- Divide (\div)

Relational Operators

Relational Operators (cont.)

$$
\underset{y=z}{\infty} \text { R2 }
$$

SQL vs. Relational Operators

- A SQL SELECT contains several relational operators.

- BNF (p. 3-44)

Traditional Set Operations

- Union Compatibility: two relations are union compatible iff they have identical headings.
i.e.:

1. they have same set of attribute name.
2. corresponding attributes are defined on the same domain.

- objective: ensure the result is still a relation.
- Union (\cup), Intersection (\cap) and Difference $(-)$ require Union Compatibility, while Cartesian Product (X) don't.

Traditional Set Operations: UNION

- A, B: two union-compatible relations.

$$
\begin{aligned}
& \mathrm{A}:\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{m}}\right) \\
& \mathrm{B}:\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{m}}\right)
\end{aligned}
$$

- A UNION B:
- Heading: $\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{m}}\right)$
- Body: the set of all tuples t belonging to either A or B (or both).
- Association:
$(\mathrm{A} \cup \mathrm{B}) \cup \mathrm{C}=\mathrm{A} \cup(\mathrm{B} \cup \mathrm{C})$
- Commutative:
$\mathrm{A} \cup \mathrm{B}=\mathrm{B} \cup \mathrm{A}$

A

B

S\#	SNAME	STATUS	CITY
S1	Smith	20	London
S2	Jones	10	Paris

$A \cup B$

S\#	SNAME	STATUS	CITY
S1	Smith	20	London
S2	Jones	10	Paris
S4	Clark	20	London

Traditional Set Operations: INTERSECTION

- A, B: two union-compatible relations.

$$
\begin{aligned}
& \text { A : }\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{m}}\right) \\
& \text { B : }\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{m}}\right)
\end{aligned}
$$

- A INTERSECT B:
- Heading: ($\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{m}}$)
- Body: the set of all tuples t belonging to both A and B.
- Association:

$$
(\mathrm{A} \cap \mathrm{~B}) \cap \mathrm{C}=\mathrm{A} \cap(\mathrm{~B} \cap \mathrm{C})
$$

- Commutative:

$$
\mathrm{A} \cap \mathrm{~B}=\mathrm{B} \cap \mathrm{~A}
$$

A

S\#	SNAME	STATUS	CITY
S1	Smith	20	London
S4	Clark	20	London

B

S\#	SNAME	STATUS	CITY
S1	Smith	20	London
S2	Jones	10	Paris

$A \cap B \quad$| S\# | SNAME | STATUS | CITY |
| :--- | :--- | :---: | :--- |
| S1 | Smith | 20 | London |

Traditional Set Operations: DIFFERENCE

- A, B: two union-compatible relations.

$$
\begin{aligned}
& \text { A : }\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{m}}\right) \\
& \text { B : }\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{m}}\right)
\end{aligned}
$$

- A MINUS B:
- Heading: $\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{m}}\right)$
- Body: the set of all tuples t belonging to A and not to B .
- Association: No!

$$
(A-B)-C \neq A-(B-C)
$$

- Commutative: No!
$A-B \neq B-A$
A

S\#	SNAME	STATUS	CITY
S1	Smith	20	London
S4	Clark	20	London

B

S\#	SNAME	STATUS	CITY
S1	Smith	20	London
S2	Jones	10	Paris

A - B			\downarrow	
	S\#	SNAME	STATUS	CITY
	S4	Clark	20	London
B - A	S\#	SNAME	STATUS	CITY
	S2	Jones	20	London

Traditional Set Operations: TIMES

- Extended Cartesian Product (x):

Given:

$$
\begin{aligned}
& \mathrm{A}=\left\{\mathrm{a} \mid \mathrm{a}=\left(\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{m}}\right)\right\} \\
& \mathrm{B}=\left\{\mathrm{b} \mid \mathrm{b}=\left(\mathrm{b}_{1}, \ldots, \mathrm{~b}_{\mathrm{n}}\right)\right\}
\end{aligned}
$$

$$
\begin{gathered}
\text { math. } \\
\hline A=\{x, y\} \\
B=\{y, z\} \\
A \times B=\{(x, y),(x, z),(y, y),(y, z)\}
\end{gathered}
$$

- Mathematical Cartesian product:

$$
A \times B=\left\{t \mid t=\left(\left(a_{1}, \ldots, a_{m}\right),\left(b_{1}, \ldots, b_{n}\right)\right)\right\}
$$

- Extended Cartesian Product:

$$
\mathrm{A} \times \mathrm{B}=\left\{\mathrm{t} \mid \mathrm{t}=\left(\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{m}}, \mathrm{~b}_{1}, \ldots, \mathrm{~b}_{\mathrm{n}}\right)\right\}
$$

- Product Compatibility: two relations are product-compatible iff their headings are disjoint.

```
<e.g.1> A (S#, SNAME)
    B (P#, PNAME, COLOR)
```

 A Ax B (S\#, SNAME, P\#, PNAME, COLOR)
 A and B are product compatible!

Traditional Set Operations: TIMES (cont.)

```
<e.g.2> S (S#, SNAME, STATUS, CITY)
    P (P#, PNAME, COLOR, WEIGHT, CITY)
                            SxP(S#,.., CITY, ..., CITY)
S and P are not product compatible!
        \square
P RENAME CITY AS PCITY;
S x P (S#, .., CITY, .., PCITY)
```


Traditional Set Operations: TIMES (cont)

- A, B: two product-compatible relations.

$$
\begin{aligned}
& A:\left(X_{1}, \ldots, X_{m}\right), A=\left\{a \mid a=\left(a_{1}, \ldots, a_{m}\right)\right\} \\
& B:\left(Y_{1}, \ldots, Y_{n}\right), B=\left\{b \mid b=\left(b_{1}, \ldots, b_{n}\right)\right\}
\end{aligned}
$$

- A TIMES B: (AxB)
- Heading: ($\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{m},} \mathrm{Y}_{1}, \ldots, \mathrm{Y}_{\mathrm{n}}$)
- Body: $\left\{\mathrm{c} \mid \mathrm{c}=\left(\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{m}}, \mathrm{b}_{1}, \ldots, \mathrm{~b}_{\mathrm{n}}\right)\right\}$
- Association:

$$
(\mathrm{A} \times \mathrm{B}) \times \mathrm{C}=\mathrm{A} \times(\mathrm{B} \times \mathrm{C})
$$

- Commutative:
$\mathrm{A} \times \mathrm{B}=\mathrm{B} \times \mathrm{A}$
A

S\#
S1
S2
S3
S4
S5

	B
X	P\#
	P1
	P2
	P3
	P4 P5
	P6

A X B

S\#	P\#
S1	P1
S1	P2
S1	P3
S1	P4
S1	P5
S1	P6
S2	P1
\vdots	\vdots
S2	P6
S3	P1
\vdots	\vdots
S3	P6
S4	P1
\vdots	\vdots
S4	P6
S5	P1
\vdots	\vdots
S5	P6

Special Relational Operations: Restriction

- Restriction: a unary operator or monadic
- Consider: A: a relation, X,Y: attributes or literal
- theta-restriction (or abbreviate to just 'restriction'):

A WHERE X theta Y
(By Date)
(θ)
or $\sigma_{X \text { theta } Y}(A)$
(By Ullman)
theta : =, <>, >, >=, <, <=, etc.
- The restriction condition (X theta Y) can be extended to be any Boolean combination by including the following equivalences:
(1) $\sigma_{\mathrm{C} 1 \text { and } \mathrm{C} 2}(\mathrm{~A})=\sigma_{\mathrm{C} 1}(\mathrm{~A}) \cap \sigma_{\mathrm{C} 2}(\mathrm{~A})$;
(2) $\sigma_{\mathrm{C} 1 \text { or } \mathrm{C} 2}(\mathrm{~A})=\sigma_{\mathrm{C} 1}(\mathrm{~A}) \cup \sigma_{\mathrm{C} 2}(\mathrm{~A})$;
(3) $\sigma_{\text {not } C}(\mathrm{~A})=\mathrm{A}-\sigma_{\mathrm{C}}(\mathrm{A})$
- <e.g.> S WHERE CITY='London'? or $\sigma_{\mathrm{CITY}}=$ 'London' $^{\prime}(\mathrm{S})$

Special Relational Operations: Projection

- Projection: a unary operator.
- Consider:
$\mathrm{A}:$ a relation
$\mathrm{X}, \mathrm{Y}, \mathrm{Z}:$ attributes
<e.g.> P[COLOR,CITY]

- Identity projection:

$$
\mathrm{A}=\mathrm{A} \quad \text { or } \Pi(\mathrm{A})=\mathrm{A}
$$

- Nullity projection:

$$
\mathrm{A}[]=\varnothing \quad \text { or } \Pi_{\varnothing}(\mathrm{A})=\varnothing
$$

Special Relational Operations: Natural
 - Natural Join: a binary operator.
 Join

- Consider:

$$
\begin{aligned}
& \mathrm{A}:\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{m}}, \mathrm{Y}_{1}, \ldots, \mathrm{Y}_{\mathrm{n}}\right) \\
& \mathrm{B}:\left(\mathrm{Y}_{1}, \ldots, \mathrm{Y}_{\mathrm{n}}, \mathrm{Z}_{1}, \ldots, \mathrm{Z}_{\mathrm{p}}\right)
\end{aligned}
$$

- A JOIN B (or $\mathrm{A} \bowtie \mathrm{B}$): common attributes appear only once. e.g. CITY

$$
\left(X_{1}, \ldots, X_{m}, Y_{1}, \ldots, Y_{n}, Z_{1}, \ldots, Z_{p}\right) ;
$$

- Association:
$(\mathrm{A} \bowtie \mathrm{B}) \bowtie \mathrm{C}=\mathrm{A} \bowtie(\mathrm{B} \bowtie \mathrm{C})$
- Commutative:

$$
\mathrm{A} \bowtie \mathrm{~B}=\mathrm{B} \bowtie \mathrm{~A}
$$

- if A and B have no attribute in common, then

$$
A \bowtie B=A \times B
$$

Special Relational Operations: Natural Join

<e.g	P.> S	$\begin{gathered} \text { S JOIN } \\ \text { S.city = P.ci } \end{gathered}$	P or S S.city			P		
S\#	SNAME	STATUS	CITY	P\#	PNAME	COLOR	WEIGHT	CITY
S1	Smith	20	London	P1	Nut	Red	12	London
S1	Smith	20	London	P4	Screw	Red	14	
S1	Smith	20	London	P6	Cog	Red	19	
S2	Jones	10	Paris	P2	Bolt	Green	17	
S2	Jones	10	Paris	P5	Cam	Blue	12	
S3	Blake	30	Paris	P2	Bolt	Green	17	
S3	Blake	30	Paris	P5	Cam	Blue	12	
S4	Clark	20	London	P1	Nut	Red	12	
S4	Clark	20	London	P4	Screw	Red	14	
S4	Clark	20	London	P6	Cog	Red	19	

Special Relational Operations: Theta Join

- A, B: product-compatible relations, A: $\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{m}}\right), \mathrm{B}:\left(\mathrm{Y}_{1}, \ldots, \mathrm{Y}_{\mathrm{n}}\right)$
- theta : =, <>, <, >,.....
- $\mathrm{A} \bowtie \mathrm{B}=\sigma_{\mathrm{x} \text { theta } \mathrm{Y}}(\mathrm{A} \times \mathrm{B})$
X theta Y
- If theta is ' $=$ ', the join is called equijoin.
<e.g.> a greater-than join
SELECT S.*, P.*
FROM S, P
WHERE S.CITY > P.CITY
$\sigma_{\mathrm{CITY}>\mathrm{PCITY}}(\mathrm{S} \times(\mathrm{P}$ RENAME CITY AS PCITY) $)$

S\#	SNAME	STATUS	CITY	P\#	PNAME	COLOR	WEIGHT	PCITY
S2	Jones	10	Paris	P1	Nut	Red	12	London
S2	Jones	10	Paris	P4	Screw	Red	14	London
S2	Jones	10	Paris	P6	Cog	Red	19	London
S3	Blake	30	Paris	P1	Nut	Red	12	London
S3	Blake	30	Paris	P4	Screw	Red	14	London
S3	Blake	30	Paris	P6	Cog	Red	19	London

Special Relational Operations: Division

- Division:
- A, B: two relations.

$$
\begin{aligned}
& \text { A : }\left(X_{1}, \ldots, X_{m}, Y_{1}, \ldots, Y_{n}\right) \\
& \text { B : }\left(Y_{1}, \ldots, Y_{n}\right)
\end{aligned}
$$

- A DIVIDEBY B (or A \div B):
- Heading: $\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{m}}\right)$
- Body: all (X:x) s.t. (X:x,Y:y) in A for all (Y:y) in B
<e.g.> "Get supplier numbers for suppliers who supply all parts."

Special Relational Operations: primitive

- Which of the eight relational operators are primitive?

1. UNION
2. DIFFERENCE
3. CARTESIAN PRODUCT
4. RESTRICT
5. PROJECT

- How to define the non-primitive operators by those primitive operators?
(1)Natural Join: S Scity $\bowtie P$
s.city = p.city
$\Pi_{\text {S\#,SNAME,STATUS,CITY,P\#,PNAME,Color,Weight }}\left(\sigma_{\text {CitY=PCITY }}\right.$ (S X (P RENAME CITY AS PCITY)))

Special Relational Operations: primitive

(2) INTERSECT: $\mathrm{A} \cap \mathrm{B}=\mathrm{A}-(\mathrm{A}-\mathrm{B})$

Special Relational Operations: primitive (ean)

(3)DIVIDE: $\mathrm{A} \div \mathrm{B}=\mathrm{A}[\mathrm{X}]-(\mathrm{A}[\mathrm{X}] \times \mathrm{B}-\mathrm{A})[\mathrm{X}]$

BNF Grammars for Relational Operator

1. expression ::= monadic-expression | dyadic-expression
2. monadic-expression $::=$ renaming | restriction | projection
3. renaming $::=$ term RENAME attribute AS attribute
4. term $::=$ relation \mid (expression)
5. restriction $::=$ term WHERE condition
6. Projection $::=$ attribute | term [attribute-commalist]
7. dyadic-expression $::=$ projection dyadic-operation expression
8. dyadic-operation $::=$ UNION \mid INTERSECT \mid MINUS \mid TIMES \mid JOIN | DIVIDEBY

(Back to p. 3-27)

BNF Grammars for Relational Operator

(cont.)

Relational Algebra v.s. Database Language:

- Example : Get supplier name for suppliers who supply part P2.
- SQL:

SELECT S.SNAME
FROM S, SP
WHERE S.S\# = SP.S\#
AND SP.P\# = 'P2'

- Relational algebra:

S\#	SNAME	STATUS	CITY	S\#	P\#	QTY
S1	Smith	20	London	S1	P1	300
S1	Smith	20	London	S1	P2	200
S1	Smith	20	London	S1	P3	400
S1	Smith	20	London	S1	P4	200
S1	Smith	20	London	S1	P5	100
S1	Smith	20	London	S1	P6	100
S2	Jones	10	Paris	S2	P1	300
S2	Jones	10	Paris	S2	P2	400
S3	Blake	30	Paris	S3	P2	200
S4	Clark	20	London	S4	P2	200
S4	Clark	20	London	S4	P4	300
S4	Clark	20	London	S4	P5	400

((S JOIN SP) WHERE P\# = 'P2') [SNAME]

$$
\Pi_{\mathrm{SNAME}}{ }^{\text {or }}\left(\sigma_{\mathrm{P} \#==^{\prime} 2^{\prime}}\left(\mathrm{S}_{\bowtie} \mathrm{SP}\right)\right)
$$

What is the Algebra for?

(1) Allow writing of expressions which serve as a high-level (SQL) and symbolic representation of the users intend.
(2) Symbolic transformation rules are possible.

A convenient basis for optimization!
e.g. ((S JOIN SP) WHERE P\#='P2')[SNAME]
= (S JOIN (SP WHERE P\#='P2')) [SNAME]
(p.544; p.11-12)

3.5 Relational Calculus

Introduction to Relational Calculus

- A notation for expressing the definition of some new relations in terms of some given relations.

$$
\text { <e.g.> } \underset{\text { definition }}{\underline{\text { SP}} . \mathrm{P} \#, \text { SITY WHERE } \frac{\text { SP.S\# }=\text { S.S\# }}{\text { predicate }}}
$$

- Based on first order predicate calculus (a branch of mathematical logic).
- Originated by Kuhn for database language (1967).
- Proposed by Codd for relational database (1972)
- ALPHA: a language based on calculus, never be implemented.
- QUEL: query language of INGRES, influenced by ALPHA.
- Two forms :
- Tuple calculus: by Codd..
- Domain calculus: by Lacroix and Pirotte.

Tuple Calculus

- BNF Grammar:

<e.g.> "Get supplier number for suppliers in Paris with status > 20"

Tuple calculus expression:

Tuple Calculus (cont.)

- Tuple variable (or Range variable):
- A variable that "range over" some named relation.
<e.g.>:

In QUEL: (Ingres)

- RANGE OF SX IS S;
- RETRIEVE (SX.S\#) WHERE SX.CITY = "London"

S							
S\# SNAME STATUS CITY SX 1 Smith 20 London S1 Smith 20 London S2 Jones 30 Paris S3 Clerk 10 Athens							

Tuple Calculus (cont.)

- Implicit tuple variable:

<e.g.>

In SQL:
SELECT $\underline{\text { S. }}$.S FROM S WHERE $\underline{\text { S }}$. CITY $=$ 'London ${ }^{\text {' }}$
In QUEL:
RETRIEVE (SX.S\#) WHERE SX.CITY='London'

Tuple Calculus: BNF

1. range-definition
$::=$ RANGE OF variable IS range-item-commalist
2. range-item
$::=$ relation | expression
3. expression
$::=$ (target-item-commalist) [WHERE wff]
4. target-item
$::=$ variable \mid variable . attribute [AS attribute]
5. wff
$::=$ condition
NOT wff
condition AND wff
condition OR wff
IF condition THEN wff
EXISTS variable (wff)
FORALL variable (wff)
(wff)

Tuple Calculus: BNF - Well-Formed Formula (WFF)

(a) Simple comparisons:

- SX.S\# = 'S1'
- SX.S\# = SPX.S\#
- SPX.P\# <> PX.P\#
(b) Boolean WFFs:
- NOT SX.CITY='London'
- SX.S\#=SPX.S\# AND SPX.P\#<>PX.P\#
(c) Quantified WFFs:

- EXISTS: existential quantifier
<e.g.> EXISTS SPX (SPX.S\#=SX.S\# and SPX.P\#= 'P2')
i.e. There exists an SP tuple with S\# value equals to the value of SX.S\# and P\# value equals to 'P2'
- FORALL: universal quantifier

$$
\begin{aligned}
& \text { <e.g.> FORALL PX }(\text { PX.COLOR }=\text { 'Red' }) \\
& \text { i.e. For all P tuples, the color is red. }
\end{aligned}
$$

<Note>: FORALL $x(f)=$ NOT EXISTS $X($ NOT $f)$

Tuple Calculus: EXAMPLE 1

[Example 1]: Get Supplier numbers for suppliers in Paris with status > 20

- SQL:

SELECT S\#
FROM S
WHERE CITY = 'Paris' AND STATUS >20

- Tuple calculus:

SX.S\# WHERE SX.CITY = 'Paris‘ AND SX.STATUS > 20

- Algebra:

$$
\Pi_{\mathrm{S} \#}\left(\sigma_{\text {cITY=Paris' and STATUS }>20}(\mathrm{~S})\right)
$$

Tuple Calculus: EXAMPLE 2

[Example 2]: Get all pairs of supplier numbers such that the two suppliers are located in the same city.

Rename S FIRST, SECOND

- SQL: (S.S\#) (S.S\#)

SELECT FIRST.S\#, SECOND.S\#
FROM S FIRST, S SECOND
WHERE FIRST.CITY = SECOND.CITY AND FIRST.S\# < SECOND.S\#;

- Tuple calculus:

> FIRSTS\#=SX.S\#, SECONDS\# =SY.S\# WHERE SX.CITY=SY.CITY AND SX.S\# < SY.S\#

- Algebra:

```
    \Pi #RRTST#,SECONDS#
```

 \(\left(\left(\Pi_{\text {FIRSTS\#, CITY }}(\mathrm{S} \text { RENAME S\# AS FIRSTS\#) })\right)_{\text {city=city }}^{\bowtie}\right.\)
 \(\left(\Pi_{\text {SECONDSH.CITY }}(\mathrm{S}\right.\) RENAME S\# AS SECONDS\# \(\left.\left.)\right)\right)\))
 $\{\mathrm{S} 1, \mathrm{~S} 1\}$
$\{\mathrm{S} 1, \mathrm{~S} 4\}$
$\{\mathrm{S} 4, \mathrm{~S} 1\}$
$\{\mathrm{S} 4, \mathrm{~S} 4\}$

Tuple Calculus: EXAMPLE 3

[Example 3]: Get supplier names for suppliers who supply all parts.

- SQL:

SELECT SNAME

FROM S
WHERE NOT EXISTS


```
( SELECT * FROM P
WHERE NOT EXISTS
( SELECT * FROM SP
WHERE S# = S.S# AND P# = P.P# ));
```

- Tuple calculus:

```
SX.SNAME
```

WHERE FORALL PX $\mathrm{P} 1, \mathrm{P} 2, \ldots, \mathrm{P} 6 \in \mathrm{PX}$
(EXISTS SPX
S1

\mathbf{P}
P\# P1 S1 SP P1 SO

Tuple Calculus：EXAMPLE 4

［Example 4］：Get part numbers for parts that either weigh more than 16 pounds or are supplied by supplier S2，or both．
－SQL：
SELECT P\＃FROM P
WHERE WEIGHT＞ 16
UNION
SELECT P\＃FROM SP
WHERE S\＃＝＇S2＇
－Tuple calculus：
RANGE OF PU IS
（PX．P\＃WHERE PX．WEIGHT＞16），
（SPX．P\＃WHERE SPX．S\＃＝＇S2＇）；
PU．P\＃；
－Algebra：

$$
\left(\Pi_{\mathrm{P} \#}\left(\sigma_{\mathrm{WEIGHT}>16} \mathrm{P}\right)\right) \cup\left(\Pi_{\mathrm{P} \#}\left(\sigma_{\mathrm{S} \#=\mathrm{S}^{2}} \mathrm{SP}\right)\right)
$$

Relational Calculus v.s. Relational Algebra.

Algebra	Calculus

("expressive power")
 Relational Calculus \equiv Relational Algebra

- Codd's reduction algorithm:

1. Show that any calculus expression can be reduced to an algebraic equivalent.

$$
\text { Algebra } \supseteq \text { Calculus }
$$

2. show that any algebraic expression can be reduced to a calculus equivalent

Calculus \supseteq Algebra

Algebra \equiv Calculus

Relationally Complete

- Def : A language is said to be relationally complete if it is at least as powerful as the relational calculus.
i.e. if any relation definable via a single expression of the calculus is definable via a single expression of the language.
<e.g.> SQL,QUEL

- Show a language L is relationally complete

Show that L includes analogs of the five primitive algebraic operation.

Easier than show L is at least as powerful as relational calculus.

Domain Calculus (Domain-Oriented Relational Calculus)

- Distinctions between domain calculus and tuple calculus:
- Variables range over domain instead of relation.
- Support an additional form of comparison:

the membership condition

<e.g.1> SP(S\#:'S1', P\#:'P1')
True iff exists a tuple in SP with S\#='S1' and P\# = 'P1' <e.g.2> SP(S\#: SX, P\#:PX)

```
e.g.: S# Domain
    ={S1,S2, ..,S100}
    S# Range
    ={S1, S2, S3, S4}
```

True iff exists a tuple in SP with
S\#=current value of domain var. SX.
P\#=current value of domain var. PX.
Var. SX PX

SP

S\#	P\#	QTY

Domain Calculus: attributes WHERE membership_condition

Tuple Calculus:

 term WHERE wff
Domain Calculus: term WHERE m-c

- Domain Calculus expressions:
e.g. 1 SX

e.g. 2 SX WHERE $\frac{S(S \#: S X)}{\text { conditio }}$
(i.e. all $\mathrm{S} \#$ in relation $\mathrm{S}_{\text {h }}$
e.g. $\left\{S_{1}, \ldots\right.$, S4\}
e.g. 3 SX WHERE S(S\#:SX, CITY:'London')
(i.e. subset of $\mathrm{S} \#$ in S for which city is 'London')

SQL:
Select S\#
From
Where City = 'London'
e.g. 4
QBE

S	S\#	SNAME	STATUS	CITY
	P.			'London'

SX, CITYX
WHERE S(S\#:SX, CITY:CITYX) AND SP(S\#: SX,P\#: 'P2')
(i.e. subset of S\# and CITY in S for the suppliers who supply P2)

Query-by-Example (QBE)

- An attractive realization of the domain calculus
- Simple in syntax
- e.g. Get supplier numbers for suppliers in Paris with status > 20
- Tuple calculus:

```
SX.S#
WHERE SX.CITY= 'Paris'
```

AND SX.STATUS > 20

- Domain calculus:
sX

WHERE EXISTS STATUSX
(STATUSX >20) AND
S(S\#:SX, STATUS:STATUSX, CITY:'Paris')

- QBE:

S	S\#	SNAME	STATUS	CITY
	P.		>20	"Paris"

Query-by-Example (cont.)

[Example]: Get all pairs of supplier numbers such that the two suppliers are located in the same city.

- SQL: SELECT FIRST.S\#, SECOND.S\#

FROM S FIRST, S SECOND
WHERE FIRST.CITY = SECOND.CITY AND FIRST.S\# < SECOND.S\#;

- Tuple calculus:

$$
\begin{aligned}
& \text { FIRSTS\# = SX.S\#, SECONDS\# = SY.S\# } \\
& \text { WHERE SX.CITY = SY.CITY AND SX.S\# < SY.S\# }
\end{aligned}
$$

- Domain calculus:

```
{S1, S4} FIRSTS# = SX, SECONDS# = SY
{S2,S3} WHERE EXISTS CITYZ
```

(S(S\#:SX,CITY:CITYZ) AND S(S\#.SY,CITY:CITYZ) AND SX<SY)

- QBE:

S	S\#	CITY
	-SX	-CZ
	-SY	-CZ

P.	$-S X$	$-S Y$

_SX, _SY, _CZ are examples.

Concluding Remarks

- Relational algebra provide a convenient target language as a vehicle for a possible implementation of the calculus.

Query in a calculus-based language.
e.g. SQL, QUEL, QBE, ...
5. Codd reduction algorithm

Equivalent algebraic expression
(3) Optimization

(p. 3-47) more in Unit 11

More efficient algebraic expression

Evaluated by the already implemented algebraic operations

Result

Concluding Remarks (cont)

- A spectrum of data management system:

S: Structure (Table)
M: Manipulative
I: Integrity

Foreign Key Statement

- Descriptive statements:

FOREIGN KEY (foreign key) REFERENCES target
 NULLS [NOT] ALLOWED
 DELETE OF target effect
 UPDATE OF target-primary-key effect;

effect: one of \{RESTRICTED, CASCADES, NULLIFIES\}
<e.g.1> (p.269)

CREATE TABLE SP
(S\# S\# NOT NULL, P\# P\# NOT NULL, QTY QTY NOT NULL,
PRIMARY KEY (S\#, P\#),
FOREIGN KEY (S\#) REFERENCE S
ON DELETE CASCADE
ON UPDATE CASCADE,
FOREIGN KEY (P\#) REFERENCE P
ON DELETE CASCADE
ON UPDATE CASCADE,
CHECK (QTY>0 AND QTY<5001));

SQL vs. Relational Operators

- A SQL SELECT contains several relational operators.

- BNF (p. 3-44)

