

Outline

a 3.1 Introduction

Q3.2
o 3.3
0 3.4
Q3.5

Wei-Pang Yang, Information Management, NDHU

Relational Data Structure
Relational Integrity Rules

Relational Algebra

Relational Calculus

3-2

3.1 Introduction

3-3

Relational Model [codd ‘70

e

o

elational DBMS
<e.g.> DB2, INGRES, SYBASE, Oracle
monal Data Model

= A way of looking at data S

= A prescription for

* representing data:
by means of tables

* manipulating that representation:
by select, join, ...

Wei-Pang Yang, Information Management, NDHU

3-4

Relational Model cont)

= Concerned with three aspects of data:
1. Data structure: tables
2. Data integrity: primary key rule, foreign key rule
3. Data manipulation: (Relational Operators):
+ Relational Algebra (See Section 3.4)
 Relational Calculus (See Section 3.5)

= Basic idea: relationship expressed in data values, not in link structure.

<e.g.> Entity Relationship Entity
Mark Works_in Math_Dept
WORKS_IN Q’
Name Dept

Mark Math_Dept

Wei-Pang Yang, Information Management, NDHU

Terminologies

= Relation : 5o far corresponds to a table.
= Tuple - a row of such a table.
= Attribute :acolumn of such a table.
= Cardinality : number of tuples.
= Degree : number of attributes.
= Primary key : an attribute or attribute combination that uniquely identify a tuple.
= Domain - a pool of legal values.
St NAME STATUS CITY \

Bndon S]
aris

an j Domains
Primary key / /

sz T sname Tsars [oy ?
S1 Smith 20 London tr
. S2 Jones 10 Paris 4\ d
Relation S3 Blake 30 Paris <«— Tuples :‘l
S4 Clark 20 London |« a
S5 Adams 30 Athens v I
t
Wei-Pang Yang, Information Management, NDHU Attributes

v

A

Degree

3.2 Relational Data Structure

3-7

Domain

= Scalar: the smallest semantic unit of data, atomic, nondecomposable.
= Domain: a set of scalar values with the same type.

= Domain-Constrained Comparisons: two attributes defined on the
same domain, then comparisons and hence joins, union, etc. will make

Ssense.
<e.g.>
SELECT P.*, SP.* SELECT P.* SP.*
FROM P,SP FROM P,SP
WHERE P.P#=SP.P# WHERE P.Weight=SP.Qty
== ==
same domain different domain

= A system that supports domain will prevent users from making silly
mistakes.

Wei-Pang Yang, Information Management, NDHU 3-8

Domain cont)

= Domain should be specified as part of the database definition.

<e.g.>

CREATE DOMAIN S# CHAR(5)
CREATE DOMAIN NAME CHAR(20)
CREATE DOMAIN STATUS SMALLINT:
CREATE DOMAIN CITY CHAR(15)
CREATE DOMAIN P# CHAR(6)
CREATE TABLE S

(St DOMAIN (S#) Not Null

SNAME DOMAIN (NAME),
CREATE TABLE P

(P# DOMAIN (P#) Not Null,

PNAME DOMAIN (NAME).
CREATE TABLE SP

(S# DOMAIN (S#) Not Null,
P# DOMAIN (P#) Not Null,

= Composite domains: a combination of simple domains.
<e.g.> DATE = MONTH(1..12) + DAY(1..31) +YEAR(0..9999)

CREATE DOMAIN MONTH CHAR(2);
CREATE DOMAIN DAY CHAR(2);
CREATE DOMAIN YEAR CHAR(4);
CREATE DOMAIN DATE
(MONTH DOMAIN (MONTH),
DAY DOMAIN (DAY),
YEAR DOMAIN (YEAR));

Wei-Pang Yang, Information Management, NDHU

Relations

= Definition : A relation on domains D,, D,, ..., D, (not necessarily all
distinct) consists of a heading and a body.

headiNg [snawe] status [oimy

S1| Smith 20 London
body S4| Clark 20 London

* Heading : a fixed set of attributes A,,....,A, such that A,
underlying domain D; (j=1...n) .

* Body: atime-varying set of tuples.

* Tuple: a set of attribute-value pairs.
{A;: Vi, AVi,,..., A Vi }, where | =1..m

i {tl’tz’ta"“tm}

Wei-Pang Yang, Information Management, NDHU 3-10

Properties of Relations

= There are no duplicate tuples: since relation is a mathematical set.
* Corollary : the primary key always exists.
(at least the combination of all attributes of the relation has the uniqueness
property.)
= Tuples are unordered.
= Attributes are unordered.

= All attribute values are atomic.
I.e. There is only one value, not a list of values at
every row-and-column position within the table.
I.e. Relations do not contain repeating groups.
I.e. Relations are normalized.

Wei-Pang Yang, Information Management, NDHU 3-11

Properties of Relations (cont.)

Normalization

S# PQ
S1 | {(P1,300),

(P2, 200),
(P3, 400),
(P4, 200),
(P5, 100),
(P6, 100) }
S2 | {(P1, 300),
(P2, 400) }
s3 | {(P2,200)}
sa | {(P2, 200),
(P4, 300),
(P5, 400) }

Wei-Pang Yang, Information Management, NDHU

- degree : 2
- domains:

(19 fact” 1 N F

: Normalized >

S# ={S1, S2, S3, S4}
PQ ={<p,g>| pe{P1, P2, ..., P6}
g e{x| 0< x <1000}}
- a mathematical relation

- degree: 3
- domains:

S# ={S1, S2, S3, S4}
P# ={P1, P2, ..., P6}
QTY = {x| 0< x <1000}}

- a mathematical relation

3-12

Properties of Relations (on)

= Reason for normalizing a relation : Simplicity!!

<e.g.> Consider two transactions T1, T2:
Transaction T1 : insert ('S5', 'P6', 500)
Transaction T2 : insert ('S4', 'P6', 500)

There are difference:
* Un-normalized: two operations (one insert, one append)
* Normalized: one operation (insert)

Wei-Pang Yang, Information Management, NDHU 3-13

Kinds of Relations

Base Relations (Real Relations): a named, atomic relation; a direct part of the database.
eg.S,P

Views (Virtual Relations): a named, derived relation; purely represented by its
definition in terms of other named relations.

Snapshots: a named, derived relation with its own stored data.

<e.g.>
CREATE SNAPSHOT SC _ :
AS SELECT S#, CITY Relation London Supplier
FROM S | View
REFRESH EVERY DAY; OP /

e A read-only relation. l S P

. T Relation

Periodically refreshed Basetable Base able

Query Results: may or may not be named, no persistent existence within the database.
Intermediate Results: result of subquery, typically unnamed.

Temporary Relations: a named relation, automatically destroyed at some appropriate
time.

Wei-Pang Yang, Information Management, NDHU 3-14

Relational Databases

= Definition: A Relational Database is a database that is perceived by the users
as a collection of time-varying, normalized relations.

* Perceived by the users: the relational model apply at the external and
conceptual levels.

* Time-varying: the set of tuples changes with time.

* Normalized: contains no repeating group (only contains atomic value).

= The relational model represents a database system at a level of abstraction that
removed from the details of the underlying machine, like high-level language.

DBMS environments

C, PASCAL ,PL/1
assembler

Wei-Pang Yang, Information Management, NDHU

Relational DBM
Relational
Data Mode

3-15

3.3 Relational Integrity Rules

Purpose:

to inform the DBMS of certain constraints
in the real world.

3-16

Keys

= Candidate keys: Let R be a relation with attributes A, A, ..., A..
The set of attributes K (A;, A, ..., Ay)
of R is said to be a candidate key iff it satisfies:

* Unigueness: At any time, no two tuples of R have the same value for K.

° Minimum: none of A;, A;, ... A, can be discarded from K without destroying
the uniqueness property.

<e.g.> S#in S is a candidate key. <] SNAME] STATUS loITy
(S#, P#) in SP is a candidate key. S1| Smith 20 L ondon
S4| Clark 20 London

(S#, CITY) in S is not a candidate key.
= Primary Key: one of the candidate keys.

= Alternate keys: candidate keys which are not the primary key.

<e.g.> S# SNAME: both are candidate keys

Xrlmar y key
ME: alternate key.

= Note: Every relatlon has at least one candidate key.

Wei-Pang Yang, Information Management, NDHU 3-17

Foreign Keys gasioc.s. oae

= Foreign keys: Attribute FK (possibly composite) of base relation R2 is a
foreign keys iff it satisfies:

1. There exists a base relation R1 with a candidate key CK, and

e 2. For all time, each value of FK is identical to the value of CK in
some tuple in the current value of R1.

CK p| P# | PNAME
s[s# [SNAME] ... (R1)| P1
(Rl) S1)) P2
S2 . . P3
P4

reference

S3 :)
reference

SP S# P# oTY
(RZ) S1 P2 .

S1 P4
S2 P1
S2 P2
S2

Foreign keys, FK 3-18

Wei-Pang Yang, Information Management, NDHU

Two Integrity Rules of Relational
e |V [a Y I —

= Rule 1: Entity Integrity Rule

No component of the primary key of a base relation is
allowed to accept nulls.

* Rule 2: Referential Integrity Rule

The database must not contain any unmatched foreign
key values.

Note: Additional rules which is specific to the database can be given.
<e.g.> QTY ={0~1000}

However, they are outside the scope of the relational model.

Wei-Pang Yang, Information Management, NDHU 3-19

Referential Integrity Rule

How to avoid against the referential Integrity Rule?

= Delete rule: what should happen on an attempt to delete/update
target of a foreign key reference

°* RESTRICTED

* CASCADES S SP

* NULLIFIES i I e

<e.g.> User issues: NS
DELETE FROM S WHERE S#="S1'

System performs:

Cascade!!

Restricted:

Reject!
Cascades:

DELETE FROM SP WHERE S#='S1'
Nullifies:

UPDATE SP SET S#=Null WHERE S#="'S1"'

Wei-Pang Yang, Information Management, NDHU 3-20

Foreign Key Statement

= Descriptive statements:
FOREIGN KEY (foreign key) REFERENCES target
NULLS [NOT] ALLOWED
DELETE OF target effect
UPDATE OF target-primary-key effect;

effect: one of {RESTRICTED, CASCADES, NULLIFIES}
<e.g.1> (p.269)

CREATE TABLE SP
(S# S# NOT NULL, P# P# NOT NULL,
QTY QTY NOT NULL,
PRIMARY KEY (S#, P#),
FOREIGN KEY (S#) REFERENCE S
ON DELETE CASCADE
ON UPDATE CASCADE,
FOREIGN KEY (P#) REFERENCE P
ON DELETE CASCADE
ON UPDATE CASCADE,
CHECK (QTY>0 AND QTY<5001));

Wei-Pang Yang, Information Management, NDHU 3-21

3.4 Relational Algebra

3-22

Introduction to Relational Algebra

= The relational algebra consists of a collection of eight high-level operators
that operate on relations.

= Each operator takes relations (one or two) as operands and produce a
relation as result.

* the important property of closure.
* nested relational expression is possible.

<e.g> R3=0(R1xR2) TiSROINR,
R; €T, selection

{{0,1,2,3},+}
Integer +0123 (OP.(OP(A)) OP B) @0123
{4 -+ 00123 | olo123
T’ ' 111234 {relations; OP1, OP2, ..., OPs} 111230
. 212345 2-3=-1 ¢ N not closure! 22301 1+2=3 €N
oblects 313456 2 313102 5+8 =13 € N closure!
= - € "
NOT Closure! N=1123...} Closure!

Wei-Pang Yang, Information Management, NDHU 3-23

Introduction to Relational Algebra (ont)

= Relational operators: [defined by Codd, 1970]

* Traditional set operations:
* Union (L)
* Intersection (M)
* Difference (-)
* Cartesian Product / Times (X)

* Special relational operations:

* Restrict (o) or Selection
* Project (I1)

 Join (X)

* Divide (=)

Wei-Pang Yang, Information Management, NDHU 3-24

Relational Operators

Union (u) Intersection (M) Difference (-)

Wei-Pang Yang, Information Management, NDHU 3-25

Relational Operators (ont)

Restrict (o)

Project (IT)

(N tural)Join
R1 X y R2 i\ \v
aljbl 1|cl 1icl
azibl b2 c2 a2 b1 cl
a3ib2| |b3|c3| |a3|b2|c2
R1D>< R2
Y=2

R1x R2

X

al
al
al
a2

bi

1
b1
b1

Product (x)

~

o

D-QJ\

Z

b1
b2
b3
b1

w

C1l
C2
C3
C1l

X
y

O O T Y
< XK XX X

(Dividg{) \

O T O O D
< X N X

Wei-Pang Yang, Information Management, NDHU

3-26

SQL vs. Relational Operators

" A SQL SELECT contains several relational operators.

<e.g.> SQL
SQL: SELECT S#, SNAME G
FROM S, SP Language
WHERE S.S# = SP.S# processor
AND CITY ="'London °
AND QTY > 200 algebra
(intermediate
& fem)
1> S, SP
2> cTCITY ='London’, QTY>200 Code gfnerator

3> Ilgyoname
Q Object code
H S#, SNAME (G CITY="London', QTY>200 (S[X]S# SP))
= BNF (p.3-44)

Wei-Pang Yang, Information Management, NDHU 3-27

Traditional Set Operations

= Union Compatibility: two relations are union compatible iff they have
identical headings.

l.e.:

1. they have same set of attribute name.

2. corresponding attributes are defined on the same domain.
* objective: ensure the result is still a relation.

= Union (L), Intersection (M) and Difference () require Union Compatibility,
while Cartesian Product (X) don't.

Wei-Pang Yang, Information Management, NDHU 3-28

Traditional Set Operations: UNION

= A, B: two union-compatible relations.

A Xy X)
B 1 (Xpye Xy
* A UNION B:

* Heading: (Xi,....X)

* Body: the set of all tuples t belonging to either A or B (or both).

* Association:
(AuB)uC=Au(BuUC)

* Commutative: A [s#] snamvE] sTATUS [CITY B [s#[SNAME] sTATUS | cITY
AuUB = BUA S1| Smith 20 London S1| Smith 20 London
S4| Clark 20 London S2| Jones 10 Paris

Au B [S#|SNAME [STATUS [CITY

S1 | Smith 20 London

S2 | Jones 10 Paris

S4 20 London

Wei-Pang Yang, Information Management, NDHU

3-29

Traditional Set Operations: INTERSECTION

* A, B: two union-compatible relations.
A Xy Xe)
B (XpueonXoy)
* A INTERSECT B:
e Heading: (Xg,...,.X,)

* Body: the set of all tuples t belonging to both A and B.

* Association:
(AnNnB)nC=An(BNC

* Commutative:

A | s#| sNAME| sTATUS | CITY B | s#| sNAME| sTATUS| CITY

_ S1| Smith 20 London S1| Smith 20 London

ANnB =BnA S4| Clark 20 London S2| Jones 10 Paris
AN BIS#| SNAME | STATUS | CITY
S1 | Smith 20 London

Wei-Pang Yang, Information Management, NDHU

3-30

Traditional Set Operations:

— DIFFERENCE

* A, B: two union-compatible relations.

A Xy X)
B: (Xy...X)
+ A MINUS B:

e Heading: (Xg,...,.X)

* Body: the set of all tuples t belonging to A and not to B.

* Association: No!

(A _ B) —C=A- (B-C) A | sy SNAME STATUS| CITY B [s#| SNAME| STATUS| CITY
] S1| Smith 20 London S1| Smith 20 London
* Commutative: No! S4| Clark 20 London s2| Jones 10 Paris
A-B=B-A '\\ //
A — B |S#| SNAME | STATUS [CITY
S4 | Clark 20 London
B —A [S#|SNAME [STATUS |CITY
S2| Jones 20 London
Wei-Pang Yang, Information Management, NDHU 3-31

Traditional Set Operations: TIMES

= Extended Cartesian Product (x): math.
Given: A={x vy}
A ={ala=(a,....a,)} B={y z}

B ={b|b=(b,....b)} Ax B ={(xy),(x,2).(y.y).(y.2)}

* Mathematical Cartesian product:
AX B = {t]t=((ay,-...ar),(03,---.b,))}
* Extended Cartesian Product:
AxB={t|t=(a...,apm0qy---.0,)}

Coalescing
* Product Compatibility: two relations are product-compatible iff their headings are
disjoint.
<e.g.1> A (S#, SNAME)
B (P#, PNAME, COLOR)
Q A x B (S#, SNAME, P#, PNAME, COLOR)

A and B are product compatible!

Wei-Pang Yang, Information Management, NDHU 3-32

Traditional Set Operations: TIMES (cont)

<e.g.2> S (S#, SNAME, STATUS, CITY)
P (P#, PNAME, COLOR, WEIGHT, CITY)

Q SXP (S#, ..., CITY, ..., CITY)

S and P are not product compatible!

~&

P RENAME CITY AS PCITY;

Sx P (S#, .., CITY, ..., PCITY)

Wei-Pang Yang, Information Management, NDHU 3-33

Traditional Set Operations: TIMES (ont,

= A, B: two product-compatible relations.
AXB

A Xy X A = {a]a= (3.8} e
S1 P1

B:(Yy.Y,), B ={b|b=(by,..b)} S|

= ATIMES B: (AxB) 21 ﬁg
* Heading: (X,... X, Y,...,Y},) 2; gf

* Body: {c|c=(a...,an;0q--,0.)} : :

= Association: A B ol
(AXB)xC=AX(BxC) S e st P:6

= Commutative: 2 X | ps l:‘> s4 | P1
P4 - -

AXB=BxA & Ps s | s

P6 ss | P1

ss5 | pe

Wei-Pang Yang, Information Management, NDHU 3-34

Special Relational Operations:
E - .
= Restriction: a unary operator or monadic
* Consider: A: a relation, X,Y: attributes or literal

* theta-restriction (or abbreviate to just 'restriction'):

A WHERE XthetaY or Gx theta y (A)
(By Date) (o) (By Ullman)

theta: =, <>, >, >=, <, <=, etc.

Al | x|y

* The restriction condition (X theta Y) can be extended to be any Boolean combination by

including the following equivalences:
(1) ocrandc2 (A) =0ci (A) Mo (A); (2) ocrorce (A) = 6c1 (A) U oy (A); (3) Oporc (A) =A - (A)

* <e.g.> SWHERE CITY='London'? or o¢ryv=London(S)

vy ==

S#| SNAME | STATUS |CITY R
S —— [s1] Smith 20 London >
S4] Clark 20 London

Wei-Pang Yang, Information Management, NDHU 3-35

Special Relational Operations:

— Projection—

= Projection: a unary operator.

* Consider: | <e.g> P[COLORCITY] p

A . a relation

X,Y,Z : attributes Q
PADYZ) o T SCRE

Green Paris
* ldentity projection: g:ue F;)Ome
)
A=A or T1(A) = A B

* Nullity projection:
A[l1=0 o ll(A)=0

Wei-Pang Yang, Information Management, NDHU 3-36

Special Relational Operations: Natural

= Natural Join: a binary operator.
* Consider:
A (XX, Y Y))
B:(YyYn ZyyenZyp)
A JOIN B (or A B): common attributes appear only once. e.g. CITY
(Koo Xy Y1000 Yy Zy5esZp);
Association:
(AB)XC = AX(BXC)
Commutative:
ANXB = BXA
if A and B have no attribute in common, then
AXB = AxB

Wei-Pang Yang, Information Management, NDHU 3-37

Special Relational Operations: Natural Join

<e.g.> SJOINP orSxP
S.city = P.city S.city = P.city

s & s

S# | SNAME | STATUS CITY P# | PNAME | COILOR | WEIGHT | CITY
S1 Smith 20 London | P1 Nut Red 12 London
S1 Smith 20 London | P4 Screw Red 14

S1 | Smith 20 London | P6 Cog Red 19

S2 | Jones 10 Paris P2 Bolt Green 17

S2 | Jones 10 Paris P5 Cam Blue 12

S3 Blake 30 Paris P2 Bolt Green 17

S3 Blake 30 Paris P5 Cam Blue 12

S4 Clark 20 London | P1 Nut Red 12

S4 Clark 20 London | P4 Screw Red 14

20

Wei-Pang Yang, Information Management, NDHU 3-38

Special Relational Operations: Theta Join

* A, B: product-compatible relations, A: (Xg,...,.X), B: (Y{...,Y,)
e theta: = <>,<,>,....
¢ A NB = cthhetaY('A‘ X B)

X thetaY

* If theta is '=', the join is called equijoin.

<e.g.> agreater-than join
SELECT S.*, P.*
FROM S, P
WHERE S.CITY >P.CITY

=
O ¢iryapcery(S X (P RENAME CITY AS PCITY))

~&

S# | SNAME | STATUS | CITY | P# | PNAME | COLOR | WEIGHT | PCITY
S2 | Jones 10 Paris | P1 Nut Red 12 London
S2 | Jones 10 Paris | P4 | Screw Red 14 London
S2 | Jones 10 Paris | P6 Cog Red 19 London
S3| Blake 30 Paris | P1 Nut Red 12 London
S3| Blake 30 Paris | P4 | Screw Red 14 London
S3| Blake 30 Paris Red 19 London

Wei-Pang Yang, Information Management, NDHU 3-39

Special Relational Operations: Division

. : 7 7 [
Division: _ <e.g.> "Get supplier numbers for
° A, B:two relations. suppliers who supply all parts.”
A Xy X YY)
. A X
B:(Yy.Yo) S# g#
- ADIVIDEBY B (or A + B): st | p1 By
; S1 P2
e Heading: (Xg,...,.X) s1 | p3 >
 Body: all (X:x) s.t. (X:x,Y:y) SL | P4 P2 A-B X
in A for all (Y:y) in B Sl = || & [s
s2 | P2 i Sl
S2 P2
S3 P2 P6
S4 P2
S4 P4
S4 P5

Wei-Pang Yang, Information Management, NDHU 3-40

Special Relational Operations:

— primitive 0000

= Which of the eight relational operators are primitive?
1. UNION
2. DIFFERENCE
3. CARTESIAN PRODUCT
4. RESTRICT
5. PROJECT

= How to define the non-primitive operators by those primitive operators?

(DNatural Join: S P |
s.City = p.city

-~

H S#,SNAME,STATUS,CITY,P#,PNAME,COLOR,WEIGHT (GCITY=PC|TY(S X (P RENAME
CITY AS PCITY)))

Wei-Pang Yang, Information Management, NDHU 3-41

Special Relational Operations:

@INTERSECT: AnB = A—(A-B)

A o A-B A-(A-B)

QO @ @

Wei-Pang Yang, Information Management, NDHU 3-42

Special Relational Operations:

— primitive ey

@DIVIDE: A +B=A[X]- (A[X]x B - A)[X]

S# S# P#
e | S1 e | S2 | P3
S3 S2 P5 sS4
S4 S2 P6
S3 P1
S3 P3 l
S3 P4
B s3 | ps
s3 | pe)]
b 53| e AIXI - (A[X] xB-A) [X
P2 sa | p3 S#
P3 sa | pe S1
P4
P5
P6

Wei-Pang Yang, Information Management, NDHU 3-43

BNF Grammars for Relational Operator

1. expression ::= monadic-expression | dyadic-expression

2. monadic-expression ::=renaming | restriction | projection

3. renaming ::= term RENAME attribute AS attribute

4. term ::= relation | (expression)

5. restriction ::= term WHERE condition

6. Projection ::= attribute | term [attribute-commalist]

7. dyadic-expression ::= projection dyadic-operation expression

8. dyadic-operation ::= UNION | INTERSECT | MINUS | TIMES | JOIN | DIVIDEBY

eg.1.S [\S#, SNA'\/”;] e.g.2 IS\'Join E’
T term | term
term attri-commalist \ | /
dyadic
|
eXp (Back to p. 3-27)

Wei-Pang Yang, Information Management, NDHU 3-44

BNF Grammars for Relational Operator
—————————————————————— O e

e.g. SJOINP exp

1
dyadic-expression

T T

projection gyadic-operation expression

6 8 1
term JOIN monadic-expression
4 2
relation projection
S | 6
term
| 4
relation
P

Wei-Pang Yang, Information Management, NDHU 3-45

Relational Algebra vs. Database

—_ language:r

= Example : Get supplier name for suppliers who supply part P2.

* SQL.:

SELECT S.SNAME
FROM S, SP

WHERE S.S# = SP.S#
AND SP.P# = 'P2

 Relational algebra:

((S JOIN SP) WHERE P# = 'P2') [SNAME]

or
Isname (Cpiu=px (Six SP))

S# SNAME | STATUS CITY S# P# QTY
S1 | Smith 20 London | S1 | P1 | 300
S1 | Smith 20 London | S1 | P2 | 200
S1 | Smith 20 London | S1 | P3 | 400
S1 | Smith 20 London | S1 | P4 | 200
S1 | Smith 20 London | S1 | P5 | 100
S1 | Smith 20 London | S1 | P6 | 100
S2 | Jones 10 Paris S2 P1 | 300
S2 | Jones 10 Paris S2 | P2 | 400
S3 | Blake 30 Paris S3 | P2 | 200
S4 | Clark 20 London | S4 | P2 | 200
S4 | Clark 20 London | S4 | P4 | 300
S4 | Clark 20 London | S4 | P5 | 400

Wei-Pang Yang, Information Management, NDHU

3-46

What iIs the Algebra for?

(1) Allow writing of expressions which serve as a high-level (SQL)
and symbolic representation of the users intend.

(2) Symbolic transformation rules are possible.
A convenient basis for optimization!

e.g. ((SJOIN SP) WHERE P#="P2)[SNAME]

= (S JOIN (SP WHERE P#='P2")) [SNAME]
(p.544; p.11-12)

Back to p.3-66

Wei-Pang Yang, Information Management, NDHU 3-47

3.5 Relational Calculus

3-48

Introduction to Relational Calculus

New

P# |CITY

SP

= A notation for expressing the definition of some new relations in
terms of some given relations.

<e.g.> SP.P#, S.CITY WHERE SP.S# = S.5#
definition predicate
= Based on first order predicate calculus (a branch of mathematical
logic).
* Originated by Kuhn for database language (1967).
* Proposed by Codd for relational database (1972)
* ALPHA: a language based on calculus, never be implemented.
* QUEL.: query language of INGRES, influenced by ALPHA.
® Two forms :
e Tuple calculus: by Codd..
* Domain calculus: by Lacroix and Pirotte.

Wei-Pang Yang, Information Management, NDHU 3-49

Tuple Calculus

= BNF Grammar:

<e.qg.> "Get supplier number for suppliers in Paris
| with stz?t%s>20" PP

Tuple calculus expression:

SX.S# WHERE SX.CITY="Paris' and SX.STATUS>20
\ /

A4

tuple attribute WFF (Well-Formed Formula)
variable

Wei-Pang Yang, Information Management, NDHU 3-50

Tuple Calculus o)

Var Y: array[1..10] Var |: Integer
yoLIT T ... L vy vz I

integer

= Tuple variable (or Range variable):

A variable that "range over" some named relation.
<e.g.>:
In QUEL.: (Ingres)
 RANGE OF SX IS S;
* RETRIEVE (SX.5#) WHERE SX.CITY ="London"

S

S# |SNAME|STATUS| CITY
SX v | S1 | Smith 20 |London
S1 |Smith] 20 |London s2 | Jones 30 Paris

S3 | Clerk 10 Athens

Wei-Pang Yang, Information Management, NDHU 3-51

Tuple Calculus (cont)

* Implicit tuple variable:
<e.g.>
In SQL.:
SELECT S.5# FROM S WHERE S.CITY = 'London’
In QUEL:
RETRIEVE (SX.S#) WHERE SX.CITY="London’

Wei-Pang Yang, Information Management, NDHU 3-52

Tuple Calculus: BNF

1. range-definition

::= RANGE OF variable IS range-item-commalist
2. range-item
::= relation | expression
3. expression
.:= (target-item-commalist) [WHERE wff]
4. target-item
.:=variable | variable . attribute [AS attribute]
5. wff
::= condition
NOT wrff
condition AND wff
condition OR wff
IF condition THEN wff

EXISTS variable (wff)
FORALL variable (wff)

(wit)

Wei-Pang Yang, Information Management, NDHU 3-53

Tuple Calculus: BNF - well-Formed Formula

WFF
(a) Simple comparisons:
° SX.S#='Sl S
* SX.S#=SPX.S# = SP
* SPX.P# <> PX.P# S1 . S#|P#| OTY
S1{P2{300
(b) Boolean WFFs: S2 so(p3
* NOT SX.CITY="London’ s2|p1

* SX.S#=SPX.S# AND SPX.P#<>PX.P#

(c) Quantified WFFs:
* EXISTS: existential quantifier

<e.g.>

EXISTS SPX (SPX.S#=SX.S# and SPX.P#="P2")
i.e. There exists an SP tuple with S# value equals to the value of SX.S# and P# value equals to 'P2'

* FORALL.: universal quantifier

97 FORALL PX(PX.COLOR = 'Red')
I.e. For all P tuples, the color is red.

<Note>: FORALL x(f) = NOT EXISTS X (NOT f)

Wei-Pang Yang, Information Management, NDHU 3-54

Tuple Calculus: EXAMPLE 1

[Example 1]: Get Supplier numbers for suppliers in Paris with status > 20

* SQL.:
SELECT S#
FROM S

WHERE CITY = "Paris' AND STATUS >20

e Tuple calculus:

SX.S# WHERE SX.CITY= "Paris* AND SX.STATUS > 20
* Algebra:

1_IS# (GCITY:'Paris', and STATUS>20(S))

Wei-Pang Yang, Information Management, NDHU 3-55

Tuple Calculus: EXAMPLE 2

[Example 2]: Get all pairs of supplier numbers such that the two suppliers are
located in the same city.

Rename S FIRST, SECOND

* SQL: (S.S#) (S.S#)
SELECT FIRST.S#, SECOND.S#
FROM S FIRST, S SECOND
WHERE FIRST.CITY = SECOND.CITY AND FIRST.S# < SECOND.S#;

* Tuple calculus:
FIRSTS#=SX.S#, SECONDS# =SY.S#

WHERE SX.CITY=SY.CITY AND SX.S# < SY.S# {81, 51}
. : {S1, S4}
Algebra: (s4. 513
HFIRSTS#,SECONDS# (GFIRSTS#<SECONDS# {S4, S4}
((IeirsTssciry (S RENAME S AS FIRSTS#)) P4 Output:
(Iseconpss ciry (S RENAME S# AS SECONDS#)))) {S1,54}{52,S3}

Wei-Pang Yang, Information Management, NDHU 3-56

Tuple Calculus: EXAMPLE 3

[Example 3]: Get supplier names for suppliers who supply all parts.

* SQL: o
SELECT SNAME S -
FROM S _ -
WHERE NOT EXISTS S1|Smith| -~

(SELECT* FROMP
WHERE NOT EXISTS

(SELECT * FROM SP

WHERE S# = S.5# AND P# = P.P#)); P
* Tuple calculus: E’I
SX.SNAME
WHERE FORALL PX P1,P2,..,P6 e PX
(EXISTS SPX S1
(SPX.S# = SX.S# AND SPX.P# = PX.P#)) SP
* Algebra: S#| P#|QTY
. S1|P1
Hename (((HS#,P# SP) + (I1p4 P)) <S)
I A B |
Sl (P3-43)
Wei-Pang Yang, Information Management, NDHU 3-57

Tuple Calculus: EXAMPLE 4 P

3

[Example 4]: Get part numbers for parts that either weigh more than 16
pounds or are supplied by supplier S2, or both.
* SQL:
SELECT P# FROMP
WHERE WEIGHT > 16
UNION
SELECT P# FROM SP
WHERE S# ='S2’
* Tuple calculus:
RANGE OF PU IS
(PX.P# WHERE PX.WEIGHT>16),
(SPX.P# WHERE SPX.S#='S2";
PU.P#;
* Algebra:

(HP# (GWEIGHT>16 P)) N (HP# (GS#:‘SZ'SP))

Wei-Pang Yang, Information Management, NDHU 3-58

Relational Calculus v.s. Relational Algebra.

Algebra Calculus
Provides explicit operations Only provide a notation for formulate
[€.9.JOIN, UNION, PROJECT,...] the definition of that desired relation in

to bU||d deSired rEIation from the given relations. terms Of those given relation.

<e.g.> Get supplier numbers and cities for suppliers who supply part P2,
1> JOIN S with SP on S#

2> RESTRICT the result
with P# = 'P2'

3> PROJECT the result
on S#and CITY

SX.S#, SX.CITY
WHERE EXISTS SPX
(SPX.SH#H=SX.S#
AND SPX.P#="P2')

Prescriptive (how?) descriptive (what ?)

non-procedural

Procedural

Wei-Pang Yang, Information Management, NDHU 3-59

("expressive power")

Relational Calculus = Relational Algebra

= Codd's reduction algorithm:

1. Show that any calculus expression can be reduced to an algebraic
equivalent.

Algebra o Calculus

2. show that any algebraic expression can be reduced to a calculus
equivalent

Calculus o Algebra

~>

Algebra = Calculus

Wei-Pang Yang, Information Management, NDHU 3-60

Relationally Complete

= Def : A language is said to be relationally complete if it is at least as
powerful as the relational calculus.

l.e. if any relation definable via a single expression of the calculus is
definable via a single expression of the language.

<e.g.> SQL,QUEL

Relationally complete
languages

relational
calculus
= Show a language L is relationally complete

Show that L includes analogs of the five primitive algebraic operation.

<>

Easier than show L is at least as powerful as relational calculus.

Wei-Pang Yang, Information Management, NDHU 3-61

Domain Calculus

(Domain-Oriented Relational Calculus)

= Distinctions between domain calculus and tuple calculus: g’#
* Variables range over domain instead of relation. S1
S2
* Support an additional form of comparison: S3
the membership condition >
e.g.. S# Domain
<e.g.1> SP(S#:'S1, P#:'P1) =51, 52,..., 5100}
True iff exists a tuple in SP with S#='S1‘ and P# = 'P1' f#SRa';geS <
<e.g.2> SP(S#: SX, P#PX) ~51 82,53, 543
True iff exists a tuple in SP with
S#=current value of domain var. SX.
P#=current value of domain var. PX. SP
Var. SX PX St P#QTY
S5 P9

Wei-Pang Yang, Information Management, NDHU

3-62

attributes WHERE membership_condition

Domain Calculus:

= Domain Calculus expressions:

Tuple Calculus:
term WHERE wff

Domain Calculus:
term WHERE m-c

Wei-Pang Yang, Information Management, NDHU

e.g.1 SX

(i.e. all possible values of supplier number)

K_\

e.0.2 SXWHERE Sgg#:”SOX)
(i.e. all S# in relation S)

e.g. {Sy, ...,

S100}

e.g. {Sy, ...,

S4}

e.0.3 SX WHERE S(S#:SX, CITY:'London")
(i.e. subset of S# in S for which city is 'London’)

SQL.:

Select S#

From S

Where City = 'London’

e.g.4
SX, CITYX

QBE

S

S#

SNAME

STATUS

CITY

P

‘London’

print

WHERE S(S#:SX, CITY:CITYX) AND SP(S#: SX,P#: 'P2')
(i.e. subset of S# and CITY in S for the suppliers who supply P2)

3-63

Query-by-Example (QBE)

= An attractive realization of the domain calculus

= Simple in syntax

= e.g. Get supplier numbers for suppliers in Paris with status > 20
* Tuple calculus:

SX.S#
WHERE SX.CITY="Paris'
AND SX.STATUS > 20

* Domain calculus:

SX
WHERE EXISTS STATUSX

(STATUSX >20) AND

S(S#:SX, STATUS:STATUSX, CITY:'Paris')

* QBE:
S | S# | SNAI\/IE| STATUS | CITY

| P. | | >20 |“Paris”

P. : print or present

Wei-Pang Yang, Information Management, NDHU 3-64

Query-by-Example (cont)

[Example]: Get all pairs of supplier numbers such that the two suppliers are located in the
same city.

« SQL: SELECT FIRST.S#, SECOND.S#
FROM S FIRST, S SECOND

WHERE FIRST.CITY = SECOND.CITY AND FIRST.S# < SECOND.S#;
e Tuple calculus:
FIRSTS# = SX.S#, SECONDS# = SY.S#
WHERE SX.CITY =SY.CITY AND SX.S#<SY.S#
* Domain calculus:

{S1, S4} FIRSTS# = SX, SECONDS# = SY
{S2, S3} WHERE EXISTS CITYZ
(S(S#:SX,CITY:CITYZ) AND S(S#SY,CITY:CITYZ) AND SX<SY)
. BE:
Q s | s# [ciTy
SX | -CZ p. | -sx|-sy
Sy | -cz

_SX, SY, CZ are examples.

Wei-Pang Yang, Information Management, NDHU 3-65

Concluding Remarks

= Relational algebra provide a convenient target language as a
vehicle for a possible implementation of the calculus.

Query In a calculus-based language.
e.g. SQL, QUEL, QBE, ...
{4 Codd reduction algorithm

Equivalent algebraic expression (0. 3-47)
Q Optimization more in Unit 11
More efficient algebraic expressipn
@ Evaluated by the already unit 11
implemented algebraic e.g. Join
operations

Result

Wei-Pang Yang, Information Management, NDHU 3-66

Concluding Remarks (o)

= A spectrum of data management system:

S: Structure (Table)
M: Manipulative
I: Integrity

Relational Systems

(Minimally) | Relationally Fully

Tabular Relational complete Relational

Wei-Pang Yang, Information Management, NDHU 3-67

Foreign Key Statement

= Descriptive statements:

FOREIGN KEY (foreign key) REFERENCES target

NULLS [NOT] ALLOWED
DELETE OF target effect

UPDATE OF target-primary-key effect;

effect: one of {RESTRICTED, CASCADES, NULLIFIES}

<e.g.1> (p.269)

CREATE TABLE SP
(S# S# NOT NULL, P# P# NOT NULL,
QTY QTY NOT NULL,
PRIMARY KEY (S#, P#),
FOREIGN KEY (S#) REFERENCE S
ON DELETE CASCADE
ON UPDATE CASCADE,
FOREIGN KEY (P#) REFERENCE P
ON DELETE CASCADE
ON UPDATE CASCADE,
CHECK (QTY>0 AND QTY<5001));

Wei-Pang Yang, Information Management, NDHU

(R1)

CK

S#

SNAME| ...

S1

SP
(R2)

refere:&

(R1)

reference

S#

P#

QTY

S1
S1
S2
S2
S2

P2
P4
P1
P2

Foreign keys, FK

3-68

SQL vs. Relational Operators

" A SQL SELECT contains several relational operators.

SQL
O
<e.g.> Language
processor
SQL: SELECT S#, SNAME
FROM S, SP algebra
WHERE S.S# = SP.S# (intermediate
AND CITY = 'London folln)
AND QTY > 200
Q Code generator
1> S>g, SP Object code

2> cTCITY ='London’, QTY>200

3> l_IS#,SNAI\/IE = II S#, SNAME (0- CITY="London', QTY>200 (S D SP))

= BNF (p. 3-44)

Wei-Pang Yang, Information Management, NDHU 3-69

